×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Regression Analysis with R. Design and develop statistical nodes to identify unique relationships within data at scale Giuseppe Ciaburro

(ebook) (audiobook) (audiobook) Książka w języku 1
Regression Analysis with R. Design and develop statistical nodes to identify unique relationships within data at scale Giuseppe Ciaburro - okladka książki

Regression Analysis with R. Design and develop statistical nodes to identify unique relationships within data at scale Giuseppe Ciaburro - okladka książki

Regression Analysis with R. Design and develop statistical nodes to identify unique relationships within data at scale Giuseppe Ciaburro - audiobook MP3

Regression Analysis with R. Design and develop statistical nodes to identify unique relationships within data at scale Giuseppe Ciaburro - audiobook CD

Autor:
Giuseppe Ciaburro
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
422
Dostępne formaty:
     PDF
     ePub
     Mobi
Regression analysis is a statistical process which enables prediction of relationships between variables. The predictions are based on the casual effect of one variable upon another. Regression techniques for modeling and analyzing are employed on large set of data in order to reveal hidden relationship among the variables.
This book will give you a rundown explaining what regression analysis is, explaining you the process from scratch. The first few chapters give an understanding of what the different types of learning are – supervised and unsupervised, how these learnings differ from each other. We then move to covering the supervised learning in details covering the various aspects of regression analysis. The outline of chapters are arranged in a way that gives a feel of all the steps covered in a data science process – loading the training dataset, handling missing values, EDA on the dataset, transformations and feature engineering, model building, assessing the model fitting and performance, and finally making predictions on unseen datasets. Each chapter starts with explaining the theoretical concepts and once the reader gets comfortable with the theory, we move to the practical examples to support the understanding. The practical examples are illustrated using R code including the different packages in R such as R Stats, Caret and so on. Each chapter is a mix of theory and practical examples.
By the end of this book you will know all the concepts and pain-points related to regression analysis, and you will be able to implement your learning in your projects.

Wybrane bestsellery

O autorze książki

Giuseppe Ciaburro holds a PhD in environmental technical physics, along with two master's degrees holds a master's degree in chemical engineering from Università degli Studi di Napoli Federico II, and a master's degreeand in acoustic and noise control from Seconda Università degli Studi di Napoli. He works at the Built Environment Control Laboratory - Università degli Studi della Campania "Luigi Vanvitelli".He has over 15 20 years of work experience in programming, first in the field of combustion and then in acoustics and noise control. His core programming knowledge is in Python and R, and he has extensive experience of working with MATLAB. An expert in acoustics and noise control, Giuseppe has wide experience in teaching professional computer ITC courses (about 15 20 years), dealing with e-learning as an author. He has several publications to his credit: monographs, scientific journals, and thematic conferences. He is currently researching machine learning applications in acoustics and noise control. He was recently included in the world's top 2% scientists list by Stanford University.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.