×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Data Analytics: Principles, Tools, and Practices Dr. Gaurav Aroraa, Chitra Lele, Dr. Munish Jindal

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Data Analytics: Principles, Tools, and Practices Dr. Gaurav Aroraa, Chitra Lele, Dr. Munish Jindal - okladka książki

Data Analytics: Principles, Tools, and Practices Dr. Gaurav Aroraa, Chitra Lele, Dr. Munish Jindal - okladka książki

Data Analytics: Principles, Tools, and Practices Dr. Gaurav Aroraa, Chitra Lele, Dr. Munish Jindal - audiobook MP3

Data Analytics: Principles, Tools, and Practices Dr. Gaurav Aroraa, Chitra Lele, Dr. Munish Jindal - audiobook CD

Autorzy:
Dr. Gaurav Aroraa, Chitra Lele, Dr. Munish Jindal
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
418
Dostępne formaty:
     ePub
     Mobi
A Complete Data Analytics Guide for Learners and Professionals.

Key Features
Learn Big Data, Hadoop Architecture, HBase, Hive and NoSQL Database.
Dive into Machine Learning, its tools, and applications.
Coverage of applications of Big Data, Data Analysis, and Business Intelligence.

Description
These days critical problem solving related to data and data sciences is in demand. Professionals who can solve real data science problems using data science tools are in demand. The book Data Analytics: Principles, Tools, and Practices can be considered a handbook or a guide for professionals who want to start their journey in the field of data science.

The journey starts with the introduction of DBMS, RDBMS, NoSQL, and DocumentDB. The book introduces the essentials of data science and the modern ecosystem, including the important steps such as data ingestion, data munging, and visualization. The book covers the different types of analysis, different Hadoop ecosystem tools like Apache Spark, Apache Hive, R, MapReduce, and NoSQL Database. It also includes the different machine learning techniques that are useful for data analytics and how to visualize data with different graphs and charts. The book discusses useful tools and approaches for data analytics, supported by concrete code examples.

After reading this book, you will be motivated to explore real data analytics and make use of the acquired knowledge on databases, BI/DW, data visualization, Big Data tools, and statistical science.

What you will learn
Familiarize yourself with Apache Spark, Apache Hive, R, MapReduce, and NoSQL Database.
Learn to manage data warehousing with real time transaction processing.
Explore various machine learning techniques that apply to data analytics.
Learn how to visualize data using a variety of graphs and charts using real-world examples from the industry.
Acquaint yourself with Big Data tools and statistical techniques for machine learning.

Who this book is for
IT graduates, data engineers and entry-level professionals who have a basic understanding of the tools and techniques but want to learn more about how they fit into a broader context are encouraged to read this book.

Table of Contents
1. Database Management System
2. Online Transaction Processing and Data Warehouse
3. Business Intelligence and its deeper dynamics
4. Introduction to Data Visualization
5. Advanced Data Visualization
6. Introduction to Big Data and Hadoop
7. Application of Big Data Real Use Cases
8. Application of Big Data
9. Introduction to Machine Learning
10. Advanced Concepts to Machine Learning
11. Application of Machine Learning

Wybrane bestsellery

BPB Publications - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
80,91 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.