×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Interpretable Machine Learning with Python. Learn to build interpretable high-performance models with hands-on real-world examples

(ebook) (audiobook) (audiobook) Książka w języku 1
Autor:
Serg Masís
Interpretable Machine Learning with Python. Learn to build interpretable high-performance models with hands-on real-world examples Serg Masís - okladka książki

Interpretable Machine Learning with Python. Learn to build interpretable high-performance models with hands-on real-world examples Serg Masís - okladka książki

Interpretable Machine Learning with Python. Learn to build interpretable high-performance models with hands-on real-world examples Serg Masís - audiobook MP3

Interpretable Machine Learning with Python. Learn to build interpretable high-performance models with hands-on real-world examples Serg Masís - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
736
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (134,10 zł najniższa cena z 30 dni)

159,00 zł (-81%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(134,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf.

We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges.
As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text.
In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining.
By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.

Wybrane bestsellery

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint