Transformers for Time Series Forecasting. Modern techniques for time series forecasting, classification, and anomaly detection with transformers Gerzson David Boros
(ebook)
(audiobook)
(audiobook)
- Autor:
- Gerzson David Boros
- Wydawnictwo:
- Packt Publishing
- Ocena:
Opis
książki
:
Transformers for Time Series Forecasting. Modern techniques for time series forecasting, classification, and anomaly detection with transformers
Generative AI has profoundly changed the world, and Transformers are a crucial instrument in this process. However, the application of Transformers for time series hasn't been widely adopted yet, despite the immense potential in this field. Transformers, among other things, possess the ability to identify long-range dependencies and interactions in the data.
In the Transformers for Time Series Forecasting book, the most recent research findings are presented in a highly practical fashion. Utilizing real-life projects and employing PyTorch and TensorFlow, the reader is guided through various use cases. Starting with the most commonly utilised applications for time series data, such as forecasting and classification, the book introduces the reader to both the theory and implementation. Later, more specialised cases are covered, including anomaly detection, event forecasting, and spatio-temporal modelling.
The final chapters introduce how to improve these algorithms further, what the best practices are, how to optimise with hyperparameter tuning techniques and architecture-level modifications. Lastly, we discuss how to scale transformer-based solutions when dealing with large amounts of data.
In the Transformers for Time Series Forecasting book, the most recent research findings are presented in a highly practical fashion. Utilizing real-life projects and employing PyTorch and TensorFlow, the reader is guided through various use cases. Starting with the most commonly utilised applications for time series data, such as forecasting and classification, the book introduces the reader to both the theory and implementation. Later, more specialised cases are covered, including anomaly detection, event forecasting, and spatio-temporal modelling.
The final chapters introduce how to improve these algorithms further, what the best practices are, how to optimise with hyperparameter tuning techniques and architecture-level modifications. Lastly, we discuss how to scale transformer-based solutions when dealing with large amounts of data.
Wybrane bestsellery
Packt Publishing - inne książki
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@helion.pl
Proszę wybrać ocenę!
Proszę wpisać opinię!
Książka drukowana
Proszę czekać...
Oceny i opinie klientów: Transformers for Time Series Forecasting. Modern techniques for time series forecasting, classification, and anomaly detection with transformers Gerzson David Boros (0) Weryfikacja opinii następuję na podstawie historii zamówień na koncie Użytkownika umieszczającego opinię. Użytkownik mógł otrzymać punkty za opublikowanie opinii uprawniające do uzyskania rabatu w ramach Programu Punktowego.