×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Data Cleaning and Exploration with Machine Learning. Get to grips with machine learning techniques to achieve sparkling-clean data quickly

(ebook) (audiobook) (audiobook) Książka w języku 1
Data Cleaning and Exploration with Machine Learning. Get to grips with machine learning techniques to achieve sparkling-clean data quickly Michael Walker - okladka książki

Data Cleaning and Exploration with Machine Learning. Get to grips with machine learning techniques to achieve sparkling-clean data quickly Michael Walker - okladka książki

Data Cleaning and Exploration with Machine Learning. Get to grips with machine learning techniques to achieve sparkling-clean data quickly Michael Walker - audiobook MP3

Data Cleaning and Exploration with Machine Learning. Get to grips with machine learning techniques to achieve sparkling-clean data quickly Michael Walker - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
542
Dostępne formaty:
     PDF
     ePub

Ebook (107,10 zł najniższa cena z 30 dni)

119,00 zł (-10%)
107,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(107,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Many individuals who know how to run machine learning algorithms do not have a good sense of the statistical assumptions they make and how to match the properties of the data to the algorithm for the best results.
As you start with this book, models are carefully chosen to help you grasp the underlying data, including in-feature importance and correlation, and the distribution of features and targets. The first two parts of the book introduce you to techniques for preparing data for ML algorithms, without being bashful about using some ML techniques for data cleaning, including anomaly detection and feature selection. The book then helps you apply that knowledge to a wide variety of ML tasks. You’ll gain an understanding of popular supervised and unsupervised algorithms, how to prepare data for them, and how to evaluate them. Next, you’ll build models and understand the relationships in your data, as well as perform cleaning and exploration tasks with that data. You’ll make quick progress in studying the distribution of variables, identifying anomalies, and examining bivariate relationships, as you focus more on the accuracy of predictions in this book.
By the end of this book, you’ll be able to deal with complex data problems using unsupervised ML algorithms like principal component analysis and k-means clustering.

Wybrane bestsellery

O autorze książki

Michael Walker jest analitykiem danych. Od ponad trzydziestu lat zajmuje się tym zagadnieniem w różnych instytucjach edukacyjnych. Od 2006 roku prowadzi na wyższych uczelniach zajęcia z analizy danych, metod badawczych, statystyki i programowania. Poza tym tworzy raporty dla fundacji i sektora publicznego, a także publikuje analizy w czasopismach naukowych.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint