Section 1
Exercise 8.1.1

a)

CREATE VIEW RichExec AS

SELECT * FROM MovieExec WHERE netWorth >= 10000000;

b)

CREATE VIEW StudioPres (name, address, cert#) AS

SELECT MovieExec.name, MovieExec.address, MovieExec.cert# FROM MovieExec, Studio WHERE MovieExec.cert# = Studio.presC#;

c)

CREATE VIEW ExecutiveStar (name, address, gender, birthdate, cert#, netWorth) AS

SELECT star.name, star.address, star.gender, star.birthdate, exec.cert#, exec.netWorth FROM MovieStar star, MovieExec exec WHERE star.name = exec.name AND star.address = exec.address;
Exercise 8.1.2

a)

SELECT name from ExecutiveStar WHERE gender = ‘f’;

b)

SELECT RichExec.name from RichExec, StudioPres where RichExec.name = StudioPres.name;

c)

SELECT ExecutiveStar.name from ExecutiveStar, StudioPres

WHERE ExecutiveStar.netWorth >= 50000000 AND

StudioPres.cert# = RichExec.cert#;
Section 2
Exercise 8.2.1

The views RichExec and StudioPres are updatable; however, the StudioPres view needs to be created with a subquery.
CREATE VIEW StudioPres (name, address, cert#) AS

SELECT MovieExec.name, MovieExec.address, MovieExec.cert# FROM MovieExec WHERE MovieExec.cert# IN (SELECT presCt# from Studio);

Exercise 8.2.2

a) Yes, the view is updatable.
b)
CREATE TRIGGER DisneyComedyInsert

INSTEAD OF INSERT ON DisneyComedies
REFERENCING NEW ROW AS NewRow

FOR EACH ROW

INSERT INTO Movies(title, year, length, studioName, genre)

VALUES(NewRow.title, NewRow.year, NewYear.length, ‘Disney’, ‘comedy’);

c)

CREATE TRIGGER DisneyComedyUpdate

INSTEAD OF UPDATE ON DisneyComedies

REFERENCING NEW ROW AS NewRow

FOR EACH ROW

UPDATE Movies SET length NewRow.length
WHERE title = NewRow.title AND year = NEWROW.year AND

studionName = ‘Disney’ AND genre = ‘comedy’;

Exercise 8.2.3

a) No, the view is not updatable since it is constructed from two different relations.

b)

CREATE TRIGGER NewPCInsert

INSTEAD OF INSERT ON NewPC

REFERENCING NEW ROW AS NewRow
FOR EACH ROW

(INSERT INTO Product VALUES(NewRow.maker, NewRow.model, ‘pc’))
(INSERT INTO PC VALUES(NewRow.model, NewRow.speed, NewRow.ram, NewRow.hd, NewRow.price));

c)

CREATE TRIGGER NewPCUpdate

INSTEAD OF UPDATE ON NewPC

REFERENCING NEW ROW AS NewRow

FOR EACH ROW

UPDATE PC SET price = NewPC.price where model = NewPC.model;

d)

CREATE TRIGGER NewPCDelete
INSTEAD OF DELETE ON NeePC

REFERENCING OLD ROW AS OldRow

FOR EACH ROW

(DELETE FROM Product WHERE model = OldRow.model)

(DELETE FROM PC where model = OldRow.model);

Section 3
Exercise 8.3.1

a)
CREATE INDEX NameIndex on Studio(name);

b)

CREATE INDEX AddressIndex on MovieExec(address);

c)

CREATE INDEX GenreIndex on Movies(genre, length);
Section 4
Exercise 8.4.1

	Action
	No Index
	Star Index
	Movie Index
	Both Indexes

	Q1
	100
	4
	100
	4

	Q2
	100
	100
	4
	4

	I
	2
	4
	4
	6

	Average
	2 + 98p1 + 98p2
	4 + 96 p2
	4 + 96 p1
	6 – 2 p1 – 2 p2

Exercise 8.4.2

Q1 = SELECT * FROM Ships WHERE name = n;

Q2 = SELECT * FROM Ships WHERE class = c;

Q3 = SELECT * FROM Ships WHERE launched = y;

I = Inserts

	Indexes

Actions
	None
	Name
	Class
	Launched
	Name & Class
	Name &
 Launched
	Class &
Launched
	Three Indexes

	Q1
	50
	2
	50
	50
	2
	2
	50
	2

	Q2
	1
	1
	2
	1
	2
	1
	2
	 2

	Q3
	50
	50
	50
	26
	50
	26
	26
	26

	I
	2
	4
	4
	4
	6
	6
	6
	8

	Average
	2 + 48p1 -p2 + 48p3
	4 + 46 p3 - 2 p1 - 3 p2
	4 + 46p1 - 2p2 + 46p3
	4 + 46p1 - 3p2 + 22p3
	6 - 4p1 - 4p2 + 44p3
	6 - 4p1 - 5p2 + 20p3
	6 - 44p1 - 4p2 + 20p3
	8 - 6p1 - 6p2 + 18p3

The best choice of indexes (name and launched) has an average cost of 6 - 4p1 - 5p2 + 20p3 per operation.
Section 5
Exercise 8.5.1

Updates to movies that involves title or year

UPDATE MovieProd SET title = ‘newTitle’ where title=’oldTitle’ AND year = oldYear;

UPDATE MovieProd SET year = newYear where title=’oldYitle’ AND year = oldYear;

Update to MovieExec involving cert#

DELETE FROM MovieProd
WHERE (title, year) IN (
SELECT title, year
FROM Movies, MovieExec
WHERE cert# = oldCert# AND cert# = producerC#
);
INSERT INTO MovieProd

SELECT title, year, name
FROM Movies, MovieExec
WHERE cert# = newCert# AND cert# = producerC#;

Exercise 8.5.2
Insertions, deletions, and updates to the base tables Product and PC would require a modification of the materialized view.
Insertions into Product with type equal to ‘pc’:

INSERT INTO NewPC
SELECT maker, model, speed, ram, hd, price FROM Product, PC WHERE Product.model = newModel and Product.model = PC.model;
Insertions into PC:

INSERT INTO NewPC
SELECT maker, ‘newModel’, ‘newSpeed’, ‘newRam’, ‘newHd’, ‘newPrice’ FROM Product WHERE model = ‘newModel’;

Deletions from Product with type equal to ‘pc’:

DELETE FROM NewPC WHERE maker = ‘deletedMaker’ AND model=’deletedModel’;

Deletions from PC:

DELETE FROM NewPC WHERE model = ‘deletedModel’;

Updates to PC:

Update NewPC SET speed=PC.speed, ram=PC.ram, hd=PC.hd, price=PC.price FROM PC where model=pc.model;
Update to the attribute ‘model’ needs to be treated as a delete and an insert.

Updates to Product:

Any changes to a Product tuple whose type is ‘pc’ need to be treated as a delete or an insert, or both.
Exercise 8.5.3

Modifications to the base tables that would require a modification to the materialized view: inserts and deletes from Ships, deletes from class, updates to a Class’ displacement.
Deletions from Ship:

UPDATE ShipStats SET

displacement=((displacement * count) –
(SELECT displacement
FROM Classses
WHERE class = ‘DeletedShipClass’)
) / (count – 1),
count = count – 1

WHERE

country = (SELECT country FROM Classes WHERE class=’DeletedShipClass’);

Insertions into Ship:
Update ShipStat SET
displacement=((displacement*count) +
(SELECT displacement FROM Classes
WHERE class=’InsertedShipClass’)
) / (count + 1),

count = count + 1
WHERE

country = (SELECT country FROM Classes WHERE classes=’InsertedShipClass);

Deletes from Classes:

NumRowsDeleted = SELECT count(*) FROM ships WHERE class = ‘DeletedClass’;

UPDATE ShipStats SET

displacement = (displacement * count) - (DeletedClassDisplacement *

NumRowsDeleted)) / (count – NumRowsDeleted),

count = count – NumRowsDeleted

WHERE country = ‘DeletedClassCountry’;

Update to a Class’ displacement:

N = SELECT count(*) FROM Ships where class = ‘UpdatedClass’;

UPDATE ShipsStat SET

displacement = ((displacement * count) + ((oldDisplacement – newDisplacement) * N))/count

WHERE

country = ‘UpdatedClassCountry’;

Exercise 8.5.4

Queries that can be rewritten with the materialized view:
Names of stars of movies produced by a certain producer
SELECT starName

FROM StarsIn, Movies, MovieExec

WHERE movieTitle = title AND movieYear = year AND producerC# = cert# AND

name = ‘Max Bialystock’;

Movies produced by a certain producer
SELECT title, year

FROM Movies, MovieExec

Where producerC# = cert# AND name = ‘George Lucas’;
Names of producers that a certain star has worked with
SELECT name

FROM Movies, MovieExec, StarsIn

Where producerC#=cert# AND title=movieTitle AND year=movieYear AND
starName=’Carrie Fisher’;

The number of movies produced by given producer
SELECT count(*)

FROM Movies, MovieExec

WHERE producerC#=cert# AND name = ‘George Lucas‘;

Names of producers who also starred in their own movies
SELECT name

FROM Movies, StarsIn, MovieExec

WHERE producerC#=cert# AND movieTitle = title AND movieYear = year AND

MovieExec.name = starName;

The number of stars that have starred in movies produced by a certain producer
SELECT count(DISTINCT starName)

FROM Movies, StarsIn, MovieExec

WHERE producerC#=cert# AND movieTitle = title AND movieYear = year AND

name ‘George Lucas’;

The number of movies produced by each producer

SELECT name, count(*)

FROM Movies, MovieExec

WHERE producerC#=cert# GROUP BY name

