Solutions

Chapter 6

6.1.1

Attributes must be separated by commas. Thus here B is an alias of A.

6.1.2

a)

SELECT address AS Studio_Address

FROM Studio

WHERE NAME = 'MGM';

b)

SELECT birthdate AS Star_Birthdate

FROM MovieStar

WHERE name = 'Sandra Bullock';

c)

SELECT starName

FROM StarsIn

WHERE movieYear = 1980

 OR movieTitle LIKE '%Love%';

However, above query will also return words that have the substring Love e.g. Lover. Below query will only return movies that have title containing the word Love.

SELECT starName

FROM StarsIn

WHERE movieYear = 1980

 OR movieTitle LIKE 'Love %'

 OR movieTitle LIKE '% Love %'

 OR movieTitle LIKE '% Love'

 OR movieTitle = 'Love';

d)

SELECT name AS Exec_Name

FROM MovieExec

WHERE netWorth >= 10000000;

e)

SELECT name AS Star_Name

FROM movieStar

WHERE gender = 'M'

 OR address LIKE '% Malibu %';

6.1.3

a)

SELECT model,

 speed,

 hd

FROM PC

WHERE price < 1000 ;

MODEL SPEED HD

----- ---------- ------

1002 2.10 250

1003 1.42 80

1004 2.80 250

1005 3.20 250

1007 2.20 200

1008 2.20 250

1009 2.00 250

1010 2.80 300

1011 1.86 160

1012 2.80 160

1013 3.06 80

 11 record(s) selected.

b)

SELECT model ,

 speed AS gigahertz,

 hd AS gigabytes

FROM PC

WHERE price < 1000 ;

MODEL GIGAHERTZ GIGABYTES

----- ---------- ---------

1002 2.10 250

1003 1.42 80

1004 2.80 250

1005 3.20 250

1007 2.20 200

1008 2.20 250

1009 2.00 250

1010 2.80 300

1011 1.86 160

1012 2.80 160

1013 3.06 80

 11 record(s) selected.

c)

SELECT maker

FROM Product

WHERE TYPE = 'printer' ;

MAKER

D

D

E

E

E

H

H

 7 record(s) selected.

d)

SELECT model,

 ram ,

 screen

FROM Laptop

WHERE price > 1500 ;

MODEL RAM SCREEN

----- ------ -------

2001 2048 20.1

2005 1024 17.0

2006 2048 15.4

2010 2048 15.4

 4 record(s) selected.

e)

SELECT *

FROM Printer

WHERE color ;

MODEL CASE TYPE PRICE

----- ----- -------- ------

3001 TRUE ink-jet 99

3003 TRUE laser 999

3004 TRUE ink-jet 120

3006 TRUE ink-jet 100

3007 TRUE laser 200

 5 record(s) selected.

Note: Implementation of Boolean type is optional in SQL standard (feature ID T031). PostgreSQL has implementation similar to above example. Other DBMS provide equivalent support. E.g. In DB2 the column type can be declare as SMALLINT with CONSTRAINT that the value can be 0 or 1. The result can be returned as Boolean type CHAR using CASE.

CREATE TABLE Printer

 (

 model CHAR(4) UNIQUE NOT NULL,

 color SMALLINT ,

 type VARCHAR(8) ,

 price SMALLINT ,

 CONSTRAINT Printer_ISCOLOR CHECK(color IN(0,1))

);

SELECT model,

 CASE color

 WHEN 1

 THEN 'TRUE'

 WHEN 0

 THEN 'FALSE'

 ELSE 'ERROR'

 END CASE ,

 type,

 price

 FROM Printer

 WHERE color = 1;

f)

SELECT model,

 hd

FROM PC

WHERE speed = 3.2

 AND price < 2000;

MODEL HD

----- ------

1005 250

1006 320

 2 record(s) selected.

6.1.4

a)

SELECT class,

 country

FROM Classes

WHERE numGuns >= 10 ;

CLASS COUNTRY

------------------ ------------

Tennessee USA

 1 record(s) selected.

b)

SELECT name AS shipName

FROM Ships

WHERE launched < 1918 ;

SHIPNAME

Haruna

Hiei

Kirishima

Kongo

Ramillies

Renown

Repulse

Resolution

Revenge

Royal Oak

Royal Sovereign

 11 record(s) selected.

c)

SELECT ship AS shipName,

 battle

FROM Outcomes

WHERE result = 'sunk' ;

SHIPNAME BATTLE

------------------ ------------------

Arizona Pearl Harbor

Bismark Denmark Strait

Fuso Surigao Strait

Hood Denmark Strait

Kirishima Guadalcanal

Scharnhorst North Cape

Yamashiro Surigao Strait

 7 record(s) selected.

d)

SELECT name AS shipName

FROM Ships

WHERE name = class ;

SHIPNAME

Iowa

Kongo

North Carolina

Renown

Revenge

Yamato

 6 record(s) selected.

e)

SELECT name AS shipName

FROM Ships

WHERE name LIKE 'R%';

SHIPNAME

Ramillies

Renown

Repulse

Resolution

Revenge

Royal Oak

Royal Sovereign

 7 record(s) selected.

Note: As mentioned in exercise 2.4.3, there are some dangling pointers and to retrieve all ships a UNION of Ships and Outcomes is required.

Below query returns 8 rows including ship named Rodney.

SELECT name AS shipName

FROM Ships

WHERE name LIKE 'R%'

UNION

SELECT ship AS shipName

FROM Outcomes

WHERE ship LIKE 'R%';

f) Only using a filter like '% % %' will incorrectly match name such as ' a b '

since % can match any sequence of 0 or more characters.

SELECT name AS shipName

FROM Ships

WHERE name LIKE '_% _% _%' ;

SHIPNAME

 0 record(s) selected.

Note: As in (e), UNION with results from Outcomes.

SELECT name AS shipName

FROM Ships

WHERE name LIKE '_% _% _%'

UNION

SELECT ship AS shipName

FROM Outcomes

WHERE ship LIKE '_% _% _%' ;

SHIPNAME

Duke of York

King George V

Prince of Wales

 3 record(s) selected.

6.1.5

a)

The resulting expression is false when neither of (a=10) or (b=20) is TRUE.

 a = 10 b = 20 a = 10 OR b = 20

 NULL TRUE TRUE

 TRUE NULL TRUE

 FALSE TRUE TRUE

 TRUE FALSE TRUE

 TRUE TRUE TRUE

b)

The resulting expression is only TRUE when both (a=10) and (b=20) are TRUE.

 a = 10 b = 20 a = 10 AND b = 20

 TRUE TRUE TRUE

c)

The expression is always TRUE unless a is NULL.

 a < 10 a >= 10 a = 10 AND b = 20

 TRUE FALSE TRUE

 FALSE TRUE TRUE

d)

The expression is TRUE when a=b except when the values are NULL.

 a b a = b

 NOT NULL NOT NULL TRUE when a=b; else FALSE

e)

Like in (d), the expression is TRUE when a<=b except when the values are NULL.

 a b a <= b

 NOT NULL NOT NULL TRUE when a<=b; else FALSE

6.1.6

SELECT *

FROM Movies

WHERE LENGTH IS NOT NULL;

6.2.1

a)

SELECT M.name AS starName

FROM MovieStar M,

 StarsIn S

WHERE M.name = S.starName

 AND S.movieTitle = 'Titanic'

 AND M.gender = 'M';

b)

SELECT S.starName

FROM Movies M ,

 StarsIn S,

 Studios T

WHERE T.name ='MGM'

 AND M.year = 1995

 AND M.title = S.movieTitle

 AND M.studioName = T.name;

c)

SELECT X.name AS presidentName

FROM MovieExec X,

 Studio T

WHERE X.cert# = T.presC#

 AND T.name = 'MGM';

d)

SELECT M1.title

FROM Movies M1,

 Movies M2

WHERE M1.length > M2.length

 AND M2.title ='Gone With the Wind' ;

e)

SELECT X1.name AS execName

FROM MovieExec X1,

 MovieExec X2

WHERE X1.netWorth > X2.netWorth

 AND X2.name = 'Merv Griffin' ;

6.2.2

a)

SELECT R.maker AS manufacturer,

 L.speed AS gigahertz

FROM Product R,

 Laptop L

WHERE L.hd >= 30

 AND R.model = L.model ;

MANUFACTURER GIGAHERTZ

------------ ----------

A 2.00

A 2.16

A 2.00

B 1.83

E 2.00

E 1.73

E 1.80

F 1.60

F 1.60

G 2.00

 10 record(s) selected.

b)

SELECT R.model,

 P.price

FROM Product R,

 PC P

WHERE R.maker = 'B'

 AND R.model = P.model

UNION

SELECT R.model,

 L.price

FROM Product R,

 Laptop L

WHERE R.maker = 'B'

 AND R.model = L.model

UNION

SELECT R.model,

 T.price

FROM Product R,

 Printer T

WHERE R.maker = 'B'

 AND R.model = T.model ;

MODEL PRICE

----- ------

1004 649

1005 630

1006 1049

2007 1429

 4 record(s) selected.

c)

SELECT R.maker

FROM Product R,

 Laptop L

WHERE R.model = L.model

EXCEPT

SELECT R.maker

FROM Product R,

 PC P

WHERE R.model = P.model ;

MAKER

F

G

 2 record(s) selected.

d)

SELECT DISTINCT P1.hd

FROM PC P1,

 PC P2

WHERE P1.hd =P2.hd

 AND P1.model > P2.model ;

Alternate Answer:

SELECT DISTINCT P.hd

FROM PC P

GROUP BY P.hd

HAVING COUNT(P.model) >= 2 ;

e)

SELECT P1.model,

 P2.model

FROM PC P1,

 PC P2

WHERE P1.speed = P2.speed

 AND P1.ram = P2.ram

 AND P1.model < P2.model ;

MODEL MODEL

----- -----

1004 1012

 1 record(s) selected.

f)

SELECT M.maker

FROM

 (SELECT maker,

 R.model

 FROM PC P,

 Product R

 WHERE SPEED >= 3.0

 AND P.model=R.model

 UNION

 SELECT maker,

 R.model

 FROM Laptop L,

 Product R

 WHERE speed >= 3.0

 AND L.model=R.model

) M

GROUP BY M.maker

HAVING COUNT(M.model) >= 2 ;

MAKER

B

 1 record(s) selected.

6.2.3

a)

SELECT S.name

FROM Ships S,

 Classes C

WHERE S.class = C.class

 AND C.displacement > 35000;

NAME

Iowa

Missouri

Musashi

New Jersey

North Carolina

Washington

Wisconsin

Yamato

 8 record(s) selected.

b)

SELECT S.name ,

 C.displacement,

 C.numGuns

FROM Ships S ,

 Outcomes O,

 Classes C

WHERE S.name = O.ship

 AND S.class = C.class

 AND O.battle = 'Guadalcanal' ;

NAME DISPLACEMENT NUMGUNS

------------------ ------------ -------

Kirishima 32000 8

Washington 37000 9

 2 record(s) selected.

Note:South Dakota was also engaged in battle of Guadalcanal but not chosen since it is not in Ships table(Hence, no information regarding it's Class is available).

c)

SELECT name shipName

FROM Ships

UNION

SELECT ship shipName

FROM Outcomes ;

SHIPNAME

Arizona

Bismark

California

Duke of York

Fuso

Haruna

Hiei

Hood

Iowa

King George V

Kirishima

Kongo

Missouri

Musashi

New Jersey

North Carolina

Prince of Wales

Ramillies

Renown

Repulse

Resolution

Revenge

Rodney

Royal Oak

Royal Sovereign

Scharnhorst

South Dakota

Tennesee

Tennessee

Washington

West Virginia

Wisconsin

Yamashiro

Yamato

 34 record(s) selected.

d)

SELECT C1.country

FROM Classes C1,

 Classes C2

WHERE C1.country = C2.country

 AND C1.type = 'bb'

 AND C2.type = 'bc' ;

COUNTRY

Gt. Britain

Japan

 2 record(s) selected.

e)

SELECT O1.ship

FROM Outcomes O1,

 Battles B1

WHERE O1.battle = B1.name

 AND O1.result = 'damaged'

 AND EXISTS

 (SELECT B2.date

 FROM Outcomes O2,

 Battles B2

 WHERE O2.battle=B2.name

 AND O1.ship = O2.ship

 AND B1.date < B2.date

) ;

SHIP

 0 record(s) selected.

f)

SELECT O.battle

FROM Outcomes O,

 Ships S ,

 Classes C

WHERE O.ship = S.name

 AND S.class = C.class

GROUP BY C.country,

 O.battle

HAVING COUNT(O.ship) > 3;

SELECT O.battle

FROM Ships S ,

 Classes C,

 Outcomes O

WHERE C.Class = S.class

 AND O.ship = S.name

GROUP BY C.country,

 O.battle

HAVING COUNT(O.ship) >= 3;

6.2.4

Since tuple variables are not guaranteed to be unique, every relation Ri should be renamed using an alias. Every tuple variable should be qualified with the alias. Tuple variables for repeating relations will also be distinctly identified this way.

Thus the query will be like

SELECT A1.COLL1,A1.COLL2,A2.COLL1,…

FROM R1 A1,R2 A2,…,Rn An

WHERE A1.COLL1=A2.COLC2,…

6.2.5

Again, create a tuple variable for every Ri, i=1,2,...,n

That is, the FROM clause is

 FROM R1 A1, R2 A2,...,Rn An.

Now, build the WHERE clause from C by replacing every reference to some attribute COL1 of Ri by Ai.COL1. In addition apply Natural Join i.e. add condition to check equality of common attribute names between Ri and Ri+1 for all i from 0 to n-1. Also, build the SELECT clause from list of attributes L by replacing every attribute COLj of Ri by Ai.COLj.

6.3.1

a)

SELECT DISTINCT maker

FROM Product

WHERE model IN

 (SELECT model

 FROM PC

 WHERE speed >= 3.0

);

SELECT DISTINCT R.maker

FROM Product R

WHERE EXISTS

 (SELECT P.model

 FROM PC P

 WHERE P.speed >= 3.0

 AND P.model =R.model

);

b)

SELECT P1.model

FROM Printer P1

WHERE P1.price >= ALL

 (SELECT P2.price

 FROM Printer P2

) ;

SELECT P1.model

FROM Printer P1

WHERE P1.price IN

 (SELECT MAX(P2.price)

 FROM Printer P2

) ;

c)

SELECT L.model

FROM Laptop L

WHERE L.speed < ANY

 (SELECT P.speed

 FROM PC P

) ;

SELECT L.model

FROM Laptop L

WHERE EXISTS

 (SELECT P.speed

 FROM PC P

 WHERE P.speed >= L.speed

) ;

d)

SELECT model

FROM

 (SELECT model,

 price

 FROM PC

 UNION

 SELECT model,

 price

 FROM Laptop

 UNION

 SELECT model,

 price

 FROM Printer

) M1

WHERE M1.price >= ALL

 (SELECT price

 FROM PC

 UNION

 SELECT price

 FROM Laptop

 UNION

 SELECT price

 FROM Printer

) ;

(d) – contd --
SELECT model

FROM

 (SELECT model,

 price

 FROM PC

 UNION

 SELECT model,

 price

 FROM Laptop

 UNION

 SELECT model,

 price

 FROM Printer

) M1

WHERE M1.price IN

 (SELECT MAX(price)

 FROM

 (SELECT price

 FROM PC

 UNION

 SELECT price

 FROM Laptop

 UNION

 SELECT price

 FROM Printer

) M2

) ;

e)

SELECT R.maker

FROM Product R,

 Printer T

WHERE R.model =T.model

 AND T.price <= ALL

 (SELECT MIN(price)

 FROM Printer

);

SELECT R.maker

FROM Product R,

 Printer T1

WHERE R.model =T1.model

 AND T1.price IN

 (SELECT MIN(T2.price)

 FROM Printer T2

);

f)

SELECT R1.maker

FROM Product R1,

 PC P1

WHERE R1.model=P1.model

 AND P1.ram IN

 (SELECT MIN(ram)

 FROM PC

)

 AND P1.speed >= ALL

 (SELECT P1.speed

 FROM Product R1,

 PC P1

 WHERE R1.model=P1.model

 AND P1.ram IN

 (SELECT MIN(ram)

 FROM PC

)

);

SELECT R1.maker

FROM Product R1,

 PC P1

WHERE R1.model=P1.model

 AND P1.ram =

 (SELECT MIN(ram)

 FROM PC

)

 AND P1.speed IN

 (SELECT MAX(P1.speed)

 FROM Product R1,

 PC P1

 WHERE R1.model=P1.model

 AND P1.ram IN

 (SELECT MIN(ram)

 FROM PC

)

);

6.3.2

a)

SELECT C.country

FROM Classes C

WHERE numGuns IN

 (SELECT MAX(numGuns)

 FROM Classes

);

SELECT C.country

FROM Classes C

WHERE numGuns >= ALL

 (SELECT numGuns

 FROM Classes

);

b)

SELECT DISTINCT C.class

FROM Classes C,

 Ships S

WHERE C.class = S.class

 AND EXISTS

 (SELECT ship

 FROM Outcomes O

 WHERE O.result='sunk'

 AND O.ship = S.name

) ;

SELECT DISTINCT C.class

FROM Classes C,

 Ships S

WHERE C.class = S.class

 AND S.name IN

 (SELECT ship

 FROM Outcomes O

 WHERE O.result='sunk'

) ;

c)

SELECT S.name

FROM Ships S

WHERE S.class IN

 (SELECT class

 FROM Classes C

 WHERE bore=16

) ;

SELECT S.name

FROM Ships S

WHERE EXISTS

 (SELECT class

 FROM Classes C

 WHERE bore =16

 AND C.class = S.class

);

d)

SELECT O.battle

FROM Outcomes O

WHERE O.ship IN

 (SELECT name

 FROM Ships S

 WHERE S.Class ='Kongo'

);

SELECT O.battle

FROM Outcomes O

WHERE EXISTS

 (SELECT name

 FROM Ships S

 WHERE S.Class ='Kongo'

 AND S.name = O.ship

);

e)

SELECT S.name

FROM Ships S,

 Classes C

WHERE S.Class = C.Class

 AND numGuns >= ALL

 (SELECT numGuns

 FROM Ships S2,

 Classes C2

 WHERE S2.Class = C2.Class

 AND C2.bore = C.bore

) ;

SELECT S.name

FROM Ships S,

 Classes C

WHERE S.Class = C.Class

 AND numGuns IN

 (SELECT MAX(numGuns)

 FROM Ships S2,

 Classes C2

 WHERE S2.Class = C2.Class

 AND C2.bore = C.bore

) ;

Better answer;

SELECT S.name

FROM Ships S,

 Classes C

WHERE S.Class = C.Class

 AND numGuns >= ALL

 (SELECT numGuns

 FROM Classes C2

 WHERE C2.bore = C.bore

) ;

SELECT S.name

FROM Ships S,

 Classes C

WHERE S.Class = C.Class

 AND numGuns IN

 (SELECT MAX(numGuns)

 FROM Classes C2

 WHERE C2.bore = C.bore

) ;

6.3.3

SELECT title

FROM Movies

GROUP BY title

HAVING COUNT(title) > 1 ;

6.3.4

SELECT S.name

FROM Ships S,

 Classes C

WHERE S.Class = C.Class ;

Assumption: In R1 join R2, the rows of R2 are unique on the joining columns.

SELECT COLL12,

 COLL13,

 COLL14

FROM R1

WHERE COLL12 IN

 (SELECT COL22

 FROM R2

)

 AND COLL13 IN

 (SELECT COL33

 FROM R3

)

 AND COLL14 IN

 (SELECT COL44

 FROM R4

) ...

6.3.5

(a)

SELECT S.name,

 S.address

FROM MovieStar S,

 MovieExec E

WHERE S.gender ='F'

 AND E.netWorth > 10000000

 AND S.name = E.name

 AND S.address = E.address ;

Note: As mentioned previously in the book, the names of stars are unique. However no such restriction exists for executives. Thus, both name and address are required as join columns.

Alternate solution:
SELECT name,

 address

FROM MovieStar

WHERE gender = 'F'

 AND (name, address) IN

 (SELECT name,

 address

 FROM MovieExec

 WHERE netWorth > 10000000

) ;

(b)

SELECT name,

 address

FROM MovieStar

WHERE (name,address) NOT IN

 (SELECT name address

 FROM MovieExec

) ;

6.3.6

By replacing the column in subquery with a constant and using IN subquery for the constant, statement equivalent to EXISTS can be found.

i.e. replace "WHERE EXISTS (SELECT C1 FROM R1..)" by "WHERE 1 IN (SELECT 1 FROM R1...)"

Example:

SELECT DISTINCT R.maker

FROM Product R

WHERE EXISTS

 (SELECT P.model

 FROM PC P

 WHERE P.speed >= 3.0

 AND P.model =R.model

) ;

Above statement can be transformed to below statement.

SELECT DISTINCT R.maker

FROM Product R

WHERE 1 IN

 (SELECT 1

 FROM PC P

 WHERE P.speed >= 3.0

 AND P.model =R.model

) ;

6.3.7

(a)

n*m tuples are returned where there are n studios and m executives. Each studio will appear m times; once for every exec.

(b)

There are no common attributes between StarsIn and MovieStar; hence no tuples are returned.

(c)

There will be at least one tuple corresponding to each star in MovieStar. The unemployed stars will appear once with null values for StarsIn. All employed stars will appear as many times as the number of movies they are working in. In other words, for each tuple in StarsIn(starName), the correspoding tuple from MovieStar(name)) is joined and returned. For tuples in MovieStar that do not have a corresponding entry in StarsIn, the MovieStar tuple is returned with null values for StarsIn columns.

6.3.8
Since model numbers are unique, a full natural outer join of PC, Laptop and Printer will return one row for each model. We want all information about PCs, Laptops and Printers even if the model does not appear in Product but vice versa is not true. Thus a left natural outer join between Product and result above is required. The type attribute from Product must be renamed since Printer has a type attribute as well and the two attributes are different.
(SELECT maker,

 model,

 type AS productType

FROM Product

) RIGHT NATURAL OUTER JOIN ((PC FULL NATURAL OUTER JOIN Laptop) FULL NATURAL OUTER JOIN Printer);

Alternately, the Product relation can be joined individually with each of PC,Laptop and Printer and the three results can be Unioned together. For attributes that do not exist in one relation, a constant such as 'NA' or 0.0 can be used. Below is an example of this approach using PC and Laptop.

SELECT R.MAKER ,

 R.MODEL ,

 R.TYPE ,

 P.SPEED ,

 P.RAM ,

 P.HD ,

 0.0 AS SCREEN,

 P.PRICE

FROM PRODUCT R,

 PC P

WHERE R.MODEL = P.MODEL

UNION

SELECT R.MAKER ,

 R.MODEL ,

 R.TYPE ,

 L.SPEED ,

 L.RAM ,

 L.HD ,

 L.SCREEN,

 L.PRICE

FROM PRODUCT R,

 LAPTOP L

WHERE R.MODEL = L.MODEL;

6.3.9

SELECT *

FROM Classes RIGHT NATURAL

 OUTER JOIN Ships ;

6.3.10

SELECT *

FROM Classes RIGHT NATURAL

 OUTER JOIN Ships

UNION

 (SELECT C2.class ,

 C2.type ,

 C2.country ,

 C2.numguns ,

 C2.bore ,

 C2.displacement,

 C2.class NAME ,

 0

 FROM Classes C2,

 Ships S2

 WHERE C2.Class NOT IN

 (SELECT Class

 FROM Ships

)

) ;

6.3.11

(a)

SELECT *

FROM R,

 S ;

(b)

Let Attr consist of

AttrR = attributes unique to R

AttrS = attributes unique to S

AttrU = attributes common to R and S

 Thus in Attr, attributes common to R and S are not repeated.

SELECT Attr

FROM R,

 S

WHERE R.AttrU1 = S.AttrU1

 AND R.AttrU2 = S.AttrU2 ...

 AND R.AttrUi = S.AttrUi ;

(c)

SELECT *

FROM R,

 S

WHERE C ;

6.4.1

(a)

DISTINCT keyword is not required here since each model only occurs once in PC relation.

SELECT model

FROM PC

WHERE speed >= 3.0 ;

(b)

SELECT DISTINCT R.maker

FROM Product R,

 Laptop L

WHERE R.model = L.model

 AND L.hd > 100 ;

(c)

SELECT R.model,

 P.price

FROM Product R,

 PC P

WHERE R.model = P.model

 AND R.maker = 'B'

UNION

SELECT R.model,

 L.price

FROM Product R,

 Laptop L

WHERE R.model = L.model

 AND R.maker = 'B'

UNION

SELECT R.model,

 T.price

FROM Product R,

 Printer T

WHERE R.model = T.model

 AND R.maker = 'B' ;

(d)

SELECT model

FROM Printer

WHERE color=TRUE

 AND type ='laser' ;

(e)

SELECT DISTINCT R.maker

FROM Product R,

 Laptop L

WHERE R.model = L.model

 AND R.maker NOT IN

 (SELECT R1.maker

 FROM Product R1,

 PC P

 WHERE R1.model = P.model

) ;

better:

SELECT DISTINCT R.maker

FROM Product R

WHERE R.type = 'laptop'

 AND R.maker NOT IN

 (SELECT R.maker

 FROM Product R

 WHERE R.type = 'pc'

) ;

(f)

With GROUP BY hd, DISTINCT keyword is not required.

SELECT hd

FROM PC

GROUP BY hd

HAVING COUNT(hd) > 1 ;

(g)

SELECT P1.model,

 P2.model

FROM PC P1,

 PC P2

WHERE P1.speed = P2.speed

 AND P1.ram = P2.ram

 AND P1.model < P2.model ;

(h)

SELECT R.maker

FROM Product R

WHERE R.model IN

 (SELECT P.model

 FROM PC P

 WHERE P.speed >= 2.8

)

 OR R.model IN

 (SELECT L.model

 FROM Laptop L

 WHERE L.speed >= 2.8

)

GROUP BY R.maker

HAVING COUNT(R.model) > 1 ;

(i)

After finding the maximum speed, an IN subquery can provide the manufacturer name.

SELECT MAX(M.speed)

FROM

 (SELECT speed

 FROM PC

 UNION

 SELECT speed

 FROM Laptop

) M ;

SELECT R.maker

FROM Product R,

 PC P

WHERE R.model = P.model

 AND P.speed IN

 (SELECT MAX(M.speed)

 FROM

 (SELECT speed

 FROM PC

 UNION

 SELECT speed

 FROM Laptop

) M

)

UNION

SELECT R2.maker

FROM Product R2,

 Laptop L

WHERE R2.model = L.model

 AND L.speed IN

 (SELECT MAX(N.speed)

 FROM

 (SELECT speed

 FROM PC

 UNION

 SELECT speed

 FROM Laptop

) N

) ;

Alternately,

SELECT COALESCE(MAX(P2.speed),MAX(L2.speed),0) SPEED

FROM PC P2

 FULL OUTER JOIN Laptop L2

 ON P2.speed = L2.speed ;

SELECT R.maker

FROM Product R,

 PC P

WHERE R.model = P.model

 AND P.speed IN

 (SELECT COALESCE(MAX(P2.speed),MAX(L2.speed),0) SPEED

 FROM PC P2

 FULL OUTER JOIN Laptop L2

 ON P2.speed = L2.speed

)

UNION

SELECT R2.maker

FROM Product R2,

 Laptop L

WHERE R2.model = L.model

 AND L.speed IN

 (SELECT COALESCE(MAX(P2.speed),MAX(L2.speed),0) SPEED

 FROM PC P2

 FULL OUTER JOIN Laptop L2

 ON P2.speed = L2.speed

)

(j)

SELECT R.maker

FROM Product R,

 PC P

WHERE R.model = P.model

GROUP BY R.maker

HAVING COUNT(DISTINCT speed) >= 3 ;

(k)

SELECT R.maker

FROM Product R,

 PC P

WHERE R.model = P.model

GROUP BY R.maker

HAVING COUNT(R.model) = 3 ;

better;

SELECT R.maker

FROM Product R

WHERE R.type='pc'

GROUP BY R.maker

HAVING COUNT(R.model) = 3 ;

6.4.2

(a)

We can assume that class is unique in Classes and DISTINCT keyword is not required.

SELECT class,

 country

FROM Classes

WHERE bore >= 16 ;

(b)

 Ship names are not unique (In absence of hull codes, year of launch can help distinguish ships).

SELECT DISTINCT name AS Ship_Name

FROM Ships

WHERE launched < 1921 ;

(c)

SELECT DISTINCT ship AS Ship_Name

FROM Outcomes

WHERE battle = 'Denmark Strait'

 AND result = 'sunk' ;

(d)

SELECT DISTINCT S.name AS Ship_Name

FROM Ships S,

 Classes C

WHERE S.class = C.class

 AND C.displacement > 35000 ;

(e)

SELECT DISTINCT O.ship AS Ship_Name,

 C.displacement ,

 C.numGuns

FROM Classes C ,

 Outcomes O,

 Ships S

WHERE C.class = S.class

 AND S.name = O.ship

 AND O.battle = 'Guadalcanal' ;

SHIP_NAME DISPLACEMENT NUMGUNS

------------------ ------------ -------

Kirishima 32000 8

Washington 37000 9

 2 record(s) selected.

Note: South Dakota was also in Guadalcanal but its class information is not available. Below query will return name of all ships that were in Guadalcanal even if no other information is available (shown as NULL). The above query is modified from INNER joins to LEFT OUTER joins.

SELECT DISTINCT O.ship AS Ship_Name,

 C.displacement ,

 C.numGuns

FROM Outcomes O

 LEFT JOIN Ships S

 ON S.name = O.ship

 LEFT JOIN Classes C

 ON C.class = S.class

WHERE O.battle = 'Guadalcanal' ;

SHIP_NAME DISPLACEMENT NUMGUNS

------------------ ------------ -------

Kirishima 32000 8

South Dakota - -

Washington 37000 9

 3 record(s) selected.

(f)

The Set opearator UNION guarantees unique results.

SELECT ship AS Ship_Name

FROM Outcomes

UNION

SELECT name AS Ship_Name

FROM Ships ;

(g)

SELECT C.class

FROM Classes C,

 Ships S

WHERE C.class = S.class

GROUP BY C.class

HAVING COUNT(S.name) = 1 ;

better:

SELECT S.class

FROM Ships S

GROUP BY S.class

HAVING COUNT(S.name) = 1 ;

(h)

The Set opearator INTERSECT guarantees unique results.

SELECT C.country

FROM Classes C

WHERE C.type='bb'

INTERSECT

SELECT C2.country

FROM Classes C2

WHERE C2.type='bc' ;

However, above query does not account for classes without any ships belonging to them.

SELECT C.country

FROM Classes C,

 Ships S

WHERE C.class = S.class

 AND C.type ='bb'

INTERSECT

SELECT C2.country

FROM Classes C2,

 Ships S2

WHERE C2.class = S2.class

 AND C2.type ='bc' ;

(i)

SELECT O2.ship AS Ship_Name

FROM Outcomes O2,

 Battles B2

WHERE O2.battle = B2.name

 AND B2.date > ANY

 (SELECT B.date

 FROM Outcomes O,

 Battles B

 WHERE O.battle = B.name

 AND O.result ='damaged'

 AND O.ship = O2.ship

);

6.4.3

a)

SELECT DISTINCT R.maker

FROM Product R,

 PC P

WHERE R.model = P.model

 AND P.speed >= 3.0;

b)

Models are unique.

SELECT P1.model

FROM Printer P1

 LEFT OUTER JOIN Printer P2

 ON (P1.price < P2.price)

WHERE P2.model IS NULL ;

c)

SELECT DISTINCT L.model

FROM Laptop L,

 PC P

WHERE L.speed < P.speed ;

d)

Due to set operator UNION, unique results are returned.

It is difficult to completely avoid a subquery here. One option is to use Views.

CREATE VIEW AllProduct AS

SELECT model,

 price

FROM PC

UNION

SELECT model,

 price

FROM Laptop

UNION

SELECT model,

 price

FROM Printer ;

SELECT A1.model

FROM AllProduct A1

 LEFT OUTER JOIN AllProduct A2

 ON (A1.price < A2.price)

WHERE A2.model IS NULL ;

But if we replace the View, the query contains a FROM subquery.

SELECT A1.model

FROM

 (SELECT model,

 price

 FROM PC

 UNION

 SELECT model,

 price

 FROM Laptop

 UNION

 SELECT model,

 price

 FROM Printer

) A1

 LEFT OUTER JOIN

 (SELECT model,

 price

 FROM PC

 UNION

 SELECT model,

 price

 FROM Laptop

 UNION

 SELECT model,

 price

 FROM Printer

) A2

 ON (A1.price < A2.price)

WHERE A2.model IS NULL ;

e)

SELECT DISTINCT R.maker

FROM Product R,

 Printer T

WHERE R.model =T.model

 AND T.price <= ALL

 (SELECT MIN(price)

 FROM Printer

);

f)

SELECT DISTINCT R1.maker

FROM Product R1,

 PC P1

WHERE R1.model=P1.model

 AND P1.ram IN

 (SELECT MIN(ram)

 FROM PC

)

 AND P1.speed >= ALL

 (SELECT P1.speed

 FROM Product R1,

 PC P1

 WHERE R1.model=P1.model

 AND P1.ram IN

 (SELECT MIN(ram)

 FROM PC

)

);

6.4.4

a)

SELECT DISTINCT C1.country

FROM Classes C1

 LEFT OUTER JOIN Classes C2

 ON (C1.numGuns < C2.numGuns)

WHERE C2.country IS NULL ;

b)

SELECT DISTINCT C.class

FROM Classes C,

 Ships S ,

 Outcomes O

WHERE C.class = S.class

 AND S.name = O.ship

 AND O.result='sunk' ;

c)

SELECT S.name

FROM Ships S,

 Classes C

WHERE C.class = S.class

 AND C.bore =16 ;

d)

SELECT O.battle

FROM Outcomes O,

 Ships S

WHERE S.Class ='Kongo'

 AND S.name = O.ship ;

e)

SELECT S.name

FROM Classes C1

 LEFT OUTER JOIN Classes C2

 ON (C1.bore = C2.bore

 AND C1.numGuns < C2.numGuns)

 INNER JOIN Ships S

 ON C1.class = S.class

WHERE C2.class IS NULL ;

6.4.5

Yes, duplicates are possible. If a person produced more than one movie of Harrison Ford's, the temporary relation Prod will contain duplicates. The join of Prod and MovieExec will also repeat the name.

6.4.6

(a)

SELECT AVG(speed) AS Avg_Speed

FROM PC ;

AVG_SPEED

 2.4846153846153846153846153

 1 record(s) selected.

(b)

SELECT AVG(speed) AS Avg_Speed

FROM Laptop

WHERE price > 1000 ;

AVG_SPEED

 1.9983333333333333333333333

 1 record(s) selected.

(c)

SELECT AVG(P.price) AS Avg_Price

FROM Product R,

 PC P

WHERE R.model=P.model

 AND R.maker='A' ;

AVG_PRICE

 1195

 1 record(s) selected.

(d)

SELECT AVG(M.price) AS Avg_Price

FROM

 (SELECT P.price

 FROM Product R,

 PC P

 WHERE R.model = P.model

 AND R.maker = 'D'

 UNION ALL

 SELECT L.price

 FROM Product R,

 Laptop L

 WHERE R.model = L.model

 AND R.maker = 'D'

) M ;

AVG_PRICE

 730

 1 record(s) selected.

(e)

SELECT SPEED,

 AVG(price) AS AVG_PRICE

FROM PC

GROUP BY speed ;

SPEED AVG_PRICE

---------- -----------

 1.42 478

 1.86 959

 2.00 650

 2.10 995

 2.20 640

 2.66 2114

 2.80 689

 3.06 529

 3.20 839

 9 record(s) selected.

(f)

SELECT R.maker,

 AVG(L.screen) AS Avg_Screen_Size

FROM Product R,

 Laptop L

WHERE R.model = L.model

GROUP BY R.maker ;

MAKER AVG_SCREEN_SIZE

----- ---------------------------------

A 15.233333333333333333333333333

B 13.300000000000000000000000000

E 17.500000000000000000000000000

F 14.750000000000000000000000000

G 15.400000000000000000000000000

 5 record(s) selected.

(g)

SELECT R.maker

FROM Product R,

 PC P

WHERE R.model = P.model

GROUP BY R.maker

HAVING COUNT(R.model) >=3 ;

better:

SELECT maker

FROM Product

WHERE type='pc'

GROUP BY maker

HAVING COUNT(model) >=3 ;

MAKER

A

B

D

E

 4 record(s) selected.

(h)

SELECT R.maker,

 MAX(P.price) AS Max_Price

FROM Product R,

 PC P

WHERE R.model = P.model

GROUP BY R.maker ;

MAKER MAX_PRICE

----- ---------

A 2114

B 1049

C 510

D 770

E 959

 5 record(s) selected.

(i)

SELECT speed,

 AVG(price) AS Avg_Price

FROM PC

WHERE speed > 2.0

GROUP BY speed ;

SPEED AVG_PRICE

---------- -----------

 2.10 995

 2.20 640

 2.66 2114

 2.80 689

 3.06 529

 3.20 839

 6 record(s) selected.

(j)

SELECT AVG(P.hd) AS Avg_HD_Size

FROM Product R,

 PC P

WHERE R.model = P.model

 AND R.maker IN

 (SELECT maker

 FROM Product

 WHERE type = 'printer'

) ;

AVG_HD_SIZE

 200

 1 record(s) selected.

6.4.7

(a)

SELECT COUNT(C.type) AS NO_Classes

FROM Classes

WHERE type ='bb' ;

NO_CLASSES

 6

 1 record(s) selected.

(b)

SELECT AVG(C.numGuns) AS Avg_Guns

FROM Classes

WHERE type ='bb' ;

AVG_GUNS

 9

 1 record(s) selected.

(c)

We weight by the number of ships and the answer could be different.

SELECT AVG(C.numGuns) AS Avg_Guns

FROM Classes C

 INNER JOIN Ships S

 ON (C.class = S.class)

WHERE C.type ='bb';

AVG_GUNS

 9

 1 record(s) selected.

(d)

Even though the book mentions that the first ship has the same name as class, we can also calculate answer differently.

SELECT C.class,

 MIN(S.launched) AS First_Launched

FROM Classes C,

 Ships S

WHERE C.class = S.class

GROUP BY C.class ;

CLASS FIRST_LAUNCHED

------------------ --------------

Iowa 1943

Kongo 1913

North Carolina 1941

Renown 1916

Revenge 1916

Tennessee 1920

Yamato 1941

 7 record(s) selected.

(e)

SELECT C.class,

 COUNT(O.ship) AS No_Sunk

FROM Classes C ,

 Outcomes O,

 Ships S

WHERE C.class = S.class

 AND S.name = O.ship

 AND O.result = 'sunk'

GROUP BY C.Class ;

CLASS NO_SUNK

------------------ -----------

Kongo 1

 1 record(s) selected.

(f)

SELECT M.class,

 COUNT(O.ship) AS No_Sunk

FROM Outcomes O,

 Ships S ,

 (SELECT C.class

 FROM Classes C,

 Ships S

 WHERE C.class = S.class

 GROUP BY C.class

 HAVING COUNT(S.name) >= 3

) M

WHERE O.result = 'sunk'

 AND O.ship = S.name

 AND S.class = M.class

GROUP BY M.class ;

CLASS NO_SUNK

------------------ -----------

Kongo 1

 1 record(s) selected.

(g)

SELECT C.country,

 AVG(C.bore*C.bore*C.bore*0.5) Avg_Shell_Wt

FROM Classes C,

 Ships S

WHERE C.class = S.class

GROUP BY C.country ;

COUNTRY AVG_SHELL_WT

------------ ---------------------------------

Gt. Britain 1687.5000000000000000000

Japan 1886.6666666666666666666

USA 1879.0000000000000000000

 3 record(s) selected.

6.4.8

SELECT starName,

 MIN(YEAR) AS minYear

FROM StarsIn

GROUP BY starName

HAVING COUNT(title) >= 3 ;

6.4.9

Yes, it is possible. We can include in gamma operator the aggregation for HAVING condition (including renaming it). Then the sigma operator can be used to apply the HAVING condition using the renamed attribute. The pi operator can be used to filter out the renamed attribute from query result.

6.5.1

(a)

INSERT

INTO Product VALUES

 (

 'C' ,

 '1100',

 'pc'

) ;

INSERT

INTO PC VALUES

 (

 '1100',

 3.2 ,

 1024,180,2499

) ;

(b)

INSERT

INTO Product

SELECT make ,

 model+1100,

 'laptop'

FROM Product

WHERE type = 'pc' ;

INSERT

INTO Laptop

SELECT model+1100,

 speed ,

 ram ,

 hd ,

 17 ,

 price+500

FROM PC ;

Or if model is character data type

INSERT

INTO Product

SELECT make ,

 CHAR(INT(model)+1100),

 'laptop'

FROM Product

WHERE type = 'pc' ;

INSERT

INTO Laptop

SELECT CHAR(INT(model)+1100),

 speed ,

 ram ,

 hd ,

 17 ,

 price+500

FROM PC ;

(c)

DELETE

FROM PC

WHERE hd < 100 ;

(d)

DELETE

FROM Laptop L

WHERE L.model IN

 (SELECT R2.model

 FROM Product R2

 WHERE R2.maker IN

 (SELECT DISTINCT R.maker

 FROM Product R

 WHERE R.maker NOT IN

 (SELECT R2.maker

 FROM Product R2

 WHERE R2.type = 'printer'

)

)

) ;

DELETE

FROM PRODUCT R3

WHERE R3.model IN

 (SELECT R2.model

 FROM Product R2

 WHERE R2.maker IN

 (SELECT DISTINCT R.maker

 FROM Product R

 WHERE R.maker NOT IN

 (SELECT R2.maker

 FROM Product R2

 WHERE R2.type = 'printer'

)

)

)

 AND R3.type = 'laptop';

(e)

UPDATE Product

SET maker = 'A'

WHERE maker = 'B' ;

(f)

UPDATE PC

SET ram = ram*2,

 hd =hd +60 ;

(g)

UPDATE Laptop L

SET L.screen = L.screen+1,

 L.price =L.price -100

WHERE L.model IN

 (SELECT R.model

 FROM Product R

 WHERE R.maker = 'B'

) ;

6.5.2

(a)

INSERT

INTO Classes VALUES

 (

 'Nelson' ,

 'bb' ,

 'Gt. Britain',

 9,16,34000

) ;

INSERT

INTO Ships VALUES

 (

 'Nelson',

 'Nelson',

 1927

);

INSERT

INTO Ships VALUES

 (

 'Rodney',

 'Nelson',

 1927

);

(b)

INSERT

INTO Classes VALUES

 (

 'Vittorio Veneto',

 'bb' ,

 'Italy' ,

 9,15,41000

) ;

INSERT

INTO Ships VALUES

 (

 'Vittorio Veneto',

 'Vittorio Veneto',

 1940

);

INSERT

INTO Ships VALUES

 (

 'Italia' ,

 'Vittorio Veneto',

 1940

);

INSERT

INTO Ships VALUES

 (

 'Roma' ,

 'Vittorio Veneto',

 1940

);

(c)

DELETE

FROM Ships S

WHERE S.name IN

 (SELECT ship

 FROM Outcomes

 WHERE result='sunk'

) ;

(d)

UPDATE Classes

SET bore =2.5 *bore,

 displacement=displacement/1.1 ;

(e)

DELETE

FROM Classes C

WHERE C.class IN

 (SELECT C2.class

 FROM Classes C2,

 Ships S

 WHERE C2.class = S.Class

 GROUP BY C2.class

 HAVING COUNT(C2.class) < 3

) ;

6.6.1

(a)

 EXEC SQL BEGIN DECLARE SECTION;

 int modelNo;

 int pcPrice;

 int pcRAM;

 float pcSpeed;

 EXEC SQL END DECLARE SECTION;

 void lookupPC(int iSpeed,int fRAM) {

 EXEC SQL SET TRANSACTION READ ONLY ISOLATION READ COMMITTED;

 EXEC SQL DECLARE pcCursor CURSOR FOR
 SELECT model,price

 FROM PC

 WHERE speed=:pcSpeed

 AND ram=:pcRAM;

 pcSpeed = iSpeed;

 pcRAM = fRAM;

 EXEC SQL OPEN pcCursor;

 EXEC SQL FETCH pcCursor

 INTO :modelNo, :pcPrice;

 while (SQLCODE == 0)

 {

 printf(“Model No: %d Price: %d”, modelNo, pcPrice);

 EXEC SQL FETCH pcCursor

 INTO :modelNo, :pcPrice;

 }

 EXEC SQL CLOSE pcCursor;

 EXEC SQL COMMIT;

 }

This is a READ ONLY transaction and READ COMMITTED provides the optimum ISOLATION LEVEL for concurrency while not allowing dirty reads.

(b)

 EXEC SQL BEGIN DECLARE SECTION;

 int modelNo;

 EXEC SQL END DECLARE SECTION;

 void deleteModel(int iModel) {

 EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

 modelNo = iModel;

 EXEC SQL DELETE FROM Product

 WHERE model = :modelNo;

 EXEC SQL DELETE FROM PC

 WHERE model = :modelNo;

 EXEC SQL COMMIT;

 }

The ISOLATION LEVEL is set to SERIALIZABLE but it could be anything since there is no risk of dirty read (no select statement).

(c)

 EXEC SQL BEGIN DECLARE SECTION;

 int modelNo;

 EXEC SQL END DECLARE SECTION;

 void updatePCPrice(int iModel) {

 EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

 modelNo = iModel;

 EXEC SQL UPDATE PC

 SET price = price - 100

 WHERE model = :modelNo;

 EXEC SQL COMMIT;

 }

For reason same as in (b) above, the isolation level is set to SERIALIZABLE.

(d)

 EXEC SQL BEGIN DECLARE SECTION;

 char maker[1];

 int exists = 0;

 int modelNo;

 int pcPrice;

 int pcRAM;

 int pcHDD;

 float pcSpeed;

 EXEC SQL END DECLARE SECTION;

 void insertPC(char cMaker[1],int iModel,int iSpeed,float fRAM,int iHDD,

 int iPrice) {

 EXEC SQL SET TRANSACTION ISOLATION READ COMMITTED;

 EXEC SQL DECLARE newCursor CURSOR FOR
 SELECT 1

 FROM Product R

 WHERE R.model=:modelNo;

 maker = cMaker;

 modelNo = iModel;

 pcSpeed = iSpeed;

 pcRAM = fRAM;

 pcHDD = iHDD;

 pcPrice = iPrice;

 EXEC SQL OPEN newCursor;

 EXEC SQL FETCH newCursor

 INTO :exists;

 if (exists == 1)

 {

 printf(“ERROR:Model No: %d already exists in database”, modelNo);

 }

 else /* Add model into database */

 {

 EXEC SQL INSERT INTO Product

 VALUES(:maker,:modelNo,'pc') ;

 EXEC SQL INSERT INTO PC

 VALUES(:modelNo,:pcSpeed,:pcRAM,:pcHDD,:pcPrice) ;

 }

 EXEC SQL CLOSE newCursor;

 EXEC SQL COMMIT;

 }

6.6.2

(a) It is a READ ONLY transaction. Thus there is no write or update atomicity problem. However, a system crash can cause truncated result and application may need to rerun on system restart.

(b) If the system crash occurs after the model was deleted from Product but before deletion from PC, an atomicity problem occurs. Databases keep a log of activities and use the log with some kind of recovery strategy to bring the database to a consistent state on system restart.

(c) There is no atomicity problem here since there is only one sql statement and each sql statement is atomic by nature. However, the application may need to call updatePCPrice again if the system crashed before update completed.

(d) Similar to (b). If system crashed between inserts, atomicity problem occurs and database is left in inconsistent state.

6.6.3

(a)

T is the READ ONLY transaction from 6.6.1 (a). Another READ ONLY transaction can run concurrently without any difference (i.e. As if all transactions ran in SERIALIZABLE isolation).

If deleteModel from 6.6.1 (b) was running concurrently with T, T may not return a PC model which had been deleted from Product and then deleteModel rolled back. With SERIALIZABLE isolation, T would return the PC model unless the delete transaction committed.

If updatePCPrice from 6.6.1 (c) was running concurrently with T, the reduced PC price(dirty read) could be returned by T even if updatePCPrice later rolled back.

Similarly, T could return the inserted PC model by insertPC (phantom read) even if insertPC later rolled back.

(b)

T is the deleteModel from 6.6.1 (b). If running insertPC concurrently with T, insertPC checked that the model does not exist since T just deleted the model, but then T rolled back. Thus insertPC attempts to insert a model that already exists.

(c)

T is updatePCPrice from 6.6.1 (c). When running concurrently with another updatePCPrice for same model, T could read the updated price (dirty data) and decrement model price by $100. But then first updatePCPrice rolled back. However, the pc price for the model was reduced by $200 though only one updatePCPrice completed.

(d)

T is insertPC from 6.6.1 (d).

When running concurrently with another insertPC, both could check that there is no product with the model, and then try to insert the model.

6.6.4

Serializable: T will never see changes to the database and keep printing the same list of PCs. This does not serve any useful purpose. Application may need to periodically stop T and then restart it to see data committed in the meantime.

Repeatable Read: T will continue to see the list of PCs it saw once. However, T will also see any new PCs that are inserted in the database. Locking issues can occur if another transaction such as 6.6.1 (b) or (c) tries to update/delete the rows read by T. 6.6.1 (d) inserts a new row and thus can run concurrently with T.

Read Committed: Perhaps the best option. T can see new or updated rows after other transactions such as 6.6.1 (c) or (d) commit. However, if T reads the same table twice, the results are not consistent because some rows may have been updated (6.6.1 (c) or deleted(6.6.1 (b)) by other transaction. Moreover, if T reads a row and based on the result then tries to read/update/delete the row; the state of row may have changed in the meantime.

Read Uncommitted: T will not cause any locking (high concurrency) but uncommitted PC data might be printed out due to insert/update by other transaction e.g. 6.6.1 (c) or (d). However, the other transaction might rollback resulting in wrong reports.

