
Solutions Manual

Chapter 10

Section 10.1

Exercise 10.1.1

(a) SELECT on MovieStar, SELECT on MovieExec.

(b) SELECT on MovieExec, SELECT on Movies, SELECT on StarsIn.

(c) SELECT on Movies, SELECT on Studio, INSERT on Studio (or INSERT(name)
on Studio).

(d) DELETE on StarsIn.

(e) UPDATE on MovieExec (or UPDATE(name) on MovieExec).

(f) REFERENCES on MovieStar (or REFERNCES(gender, name) onMovieS-
tar).

(g) REFERENCES on Studio, REFERENCES on MovieExec (or REFERENCES(name,
presC#) on Studio, REFERENCES(cert#, netWorth) on MovieExec).

2

Exercise 10.1.2

After step (4), the grant diagram is as follows:

A
p
∗∗

-

?

B
p
∗

-

C
p

D
p
∗

-

?

�

C
p
∗

E
p
∗

After step (5), the grant diagram is as follows:

A
p
∗∗

-

?

B
p
∗

C
p

After step (6), the grant diagram is as follows:

A
p
∗∗

-
B
p
∗

3

Exercise 10.1.3

After step (5), the grant diagram is as follows:

A
p
∗∗

-

?

B
p
∗

-
C
p
∗

-
D
p
∗

E
p
∗

-

:

C
p

After step (6), the grant diagram is as follows:

A
p
∗∗

?

D
p
∗

E
p
∗

-

:

C
p

Exercise 10.1.4

The grant diagram after the final step is as follows:

A
p
∗∗

4

Section 10.2

Exercise 10.2.1

(a) The rules for trips that have reasonable connections are:

Trips(x, y, dep, arr) ← Flights(, x, y, dep, arr)

Trips(x, y, dep, arr) ← Trips(x, z, dep1, arr1) AND

Trips(z, y, dep2, arr2) AND

arr1 6 dep2 − 100

(b) Using the book’s syntax, the SQL is:

WITH RECURSIVE Trips(frm, to, dep, arr) AS

(SELECT frm, to, dep, arr

FROM Flights)

UNION

(SELECT T.frm, F.to, T.dep, F.arr

FROM Trips T, Flights F

WHERE T.to = F.from

AND T.arr <= F.dep - 100)

SELECT *

FROM Trips;

Exercise 10.2.2

BecauseFROM is one of the SQL reserved words, using it as an identifier is not
recommended. Note that most major vendors do not prohibit the use of reserved
words when the use is not ambiguous (e.g. SELECT FROM FROM FROM is not
ambiguous and will work), but such use is highly discouragedfor readability and
portability reasons.

5

Exercise 10.2.3

(a)

FollowOn(x, y) ← SequelOf(x, y)

FollowOn(x, y) ← FollowOn(x, z) AND

SequelOf(z, y)

(b) Using the book’s syntax, the SQL is:

WITH RECURSIVE FollowOn(movie, followOn) AS

(SELECT movie, sequel

FROM SequelOf)

UNION

(SELECT F.movie, S.sequel

FROM FollowOn F, Sequel S

WHERE F.followOn = S.movie)

SELECT *

FROM FollowOn;

(c) Using the book’s syntax, the SQL is:

WITH RECURSIVE FollowOn(movie, followOn) AS

(SELECT movie, sequel

FROM SequelOf)

UNION

(SELECT F.movie, S.sequel

FROM FollowOn F, Sequel S

WHERE F.followOn = S.movie)

SELECT movie, followOn

FROM FollowOn

EXCEPT

SELECT movie, sequel

FROM SequelOf;

(Similarly, NOT IN or NOT EXISTS can be used instead of EXCEPT).

6

(d) One of the ways is to first get all of the recursive tuples asfor the original
FollowOn in (a), and then subtract the those tuples that represent sequel or
sequel of a sequel. Using the book’s syntax, the SQL would be:

WITH RECURSIVE FollowOn(movie, followOn) AS

(SELECT movie, sequel

FROM SequelOf)

UNION

(SELECT F.movie, S.sequel

FROM FollowOn F, Sequel S

WHERE F.followOn = S.movie)

SELECT movie, followOn

FROM FollowOn

EXCEPT

(SELECT movie, sequel

FROM SequelOf

UNION

SELECT X.movie, Y.sequel

FROM Sequel X, Sequel Y

WHERE X.sequel = Y.movie);

Another way would be to start FollowOn tuples only from the tuples of
movies that have more than two sequels (using a join similar to the one
above but with three Sequel tables).

(e) We simply need to count the number of followon values per movie. Using
the book’s syntax, the SQL would be:

WITH RECURSIVE FollowOn(movie, followOn) AS

(SELECT movie, sequel

FROM SequelOf)

UNION

(SELECT F.movie, S.sequel

FROM FollowOn F, Sequel S

WHERE F.followOn = S.movie)

SELECT movie

7

FROM FollowOn

GROUP BY movie

HAVING COUNT(followon) >= 2;

(f) This is, in a sense, a reverse of (e) above, because to haveat most one fol-
lowon means that the total count of the tuples grouped by the given movie
x must be no greater than 2 (one for the movie and its sequel, and the other
for the sequel and its sequel). Using the book’s syntax, the SQL would be:

WITH RECURSIVE FollowOn(movie, followOn) AS

(SELECT movie, sequel

FROM SequelOf)

UNION

(SELECT F.movie, S.sequel

FROM FollowOn F, Sequel S

WHERE F.followOn = S.movie)

SELECT movie, followon

FROM FollowOn

WHERE movie IN(SELECT movie

FROM FollowOn

GROUP BY movie

HAVING COUNT(followon) <= 2);

Exercise 10.2.4

(a) WITH RECURSIVE Path(class, rclass) AS
(SELECT class, rclass

FROM Rel)

UNION

(SELECT Path.class, Rel.rclass

FROM Path, Rel

WHERE Path.rclass = Rel.class)

SELECT *

FROM Path;

(b) WITH RECURSIVE Path(class, rclass) AS
(SELECT class, rclass

8

FROM Rel

WHERE mult = ’single’)

UNION

(SELECT Path.class, Rel.rclass

FROM Path, Rel

WHERE Path.rclass = Rel.class

AND Rel.mult = ’single’)

SELECT *

FROM Path;

(c) WITH RECURSIVE Path(class, rclass) AS
(SELECT class, rclass

FROM Rel

WHERE mult = ’multi’)

UNION

(SELECT Path.class, Rel.rclass

FROM Path, Rel

WHERE Path.rclass = Rel.class)

UNION

(SELECT Rel.class, Path.rclass

FROM Path, Rel

WHERE Rel.rclass = Path.class)

SELECT *

FROM Path;

(d) This could be viewed as relation from (a) EXCEPT relationfrom (b).

WITH RECURSIVE PathAll(class, rclass) AS

(SELECT class, rclass

FROM Rel)

UNION

(SELECT PathAll.class, Rel.rclass

FROM PathAll, Rel

WHERE PathAll.rclass = Rel.class),

RECURSIVE PathSingle(class, rclass) AS

(SELECT class, rclass

FROM Rel

9

WHERE mult = ’single’)

UNION

(SELECT PathSingle.class, Rel.rclass

FROM PathSingle, Rel

WHERE PathSingle.rclass = Rel.class

AND Rel.mult = ’single’)

SELECT class, rclass

FROM PathAll

EXCEPT

SELECT class, rclass

FROM PathSingle

;

(e) We include the edge label as part of the recursive relation and then, basi-
cally, we build the path as in (a) except we only add edges thathave an
opposite label.

WITH RECURSIVE Path(class, rclass, mult) AS

(SELECT class, rclass, mult

FROM Rel)

UNION

(SELECT Path.class, Rel.rclass, Rel.mult

FROM Path, Rel

WHERE Path.rclass = Rel.class

AND Path.mult <> Rel.mult)

SELECT *

FROM Path;

(f) WITH RECURSIVE Path(class, rclass) AS
(SELECT class, rclass

FROM Rel

WHERE mult = ’single’)

UNION

(SELECT Path.class, Rel.rclass

FROM Path, Rel

WHERE Path.rclass = Rel.class

AND Rel.mult = ’single’)

10

SELECT *

FROM Path X

WHERE EXISTS(SELECT 1

FROM Path Y

WHERE Y.class = X.rclass

AND Y.rclass = X.class)

;

Section 10.3

Exercise 10.3.1

(a) Stars(name, address, birthdate)
Movies(title, year, length, stars({*Stars}))

(b) Stars(name, address, birthdate)
Movies(title, year, length, stars({*Stars}))

Studios(name, address, movies({*Movies}))

(c) Stars(name, address, birthdate)
Movies(title, year, length, studio(name, address), stars({*Stars}))

Exercise 10.3.2

Customers(name, address, phone, ssNo, accts({*Accounts}))

Accounts(number, type, balance, owners({*Customers}))

Exercise 10.3.3

Customers(name, address, phone, ssNo, accts({*Accounts}))

Accounts(number, type, balance, owner(*Customers))

Exercise 10.3.4

Players(name)

Teams(name, players({*Players}), captain(*Players), colors)

Fans(name, fav_teams({*Teams}), fav_players({*Players}), fav_color)

11

Exercise 10.3.5

People(name, mother(*People), father(*People), children({*People}))

Section 10.4

Exercise 10.4.1

Movies(

title TitleType,

year YearType,

length DurationType,

genre GenreType,

studioName BusinessNameType,

producerC# CertificateType

)

MovieStar(

name PersonNameType,

address AddressType,

gender GenderType,

birthdate DateType

)

StarsIn(

movieTitle TitleType,

movieYear YearType,

starName PersonNameType

)

MovieExec(

name PersonNameType,

address AddressType,

cert# CertificateType,

netWorth CurrencyType

)

Studio(

12

name BusinessNameType,

address AddressType,

presC# CertificateType

)

Exercise 10.4.2

(a) CREATE TYPE NameType AS(
first VARCHAR(30),

middle VARCHAR(50),

last VARCHAR(30),

title VARCHAR(10)

);

(b) CREATE TYPE PersonType AS(
name NameType,

mother REF(PersonType),

father REF(PersonType)

);

(c) CREATE TYPE MarriageType AS(
date DATE,

husband REF(PersonType),

wife REF(PersonType)

);

Exercise 10.4.3

CREATE TYPE ProductType AS(

maker CHAR(5),

model INTEGER,

type CHAR(8)

);

CREATE TABLE Product OF ProductType(

REF IS ProductId SYSTEM GENERATED

);

13

CREATE TABLE PC(

model REF(ProductType) SCOPE Product,

speed DECIMAL(5,2),

ram INTEGER,

hd INTEGER

price DECIMAL(10,2)

);

CREATE TABLE Laptop(

model REF(ProductType) SCOPE Product,

speed DECIMAL(5,2),

ram INTEGER,

hd INTEGER

screen DECIMAL(5,2),

price DECIMAL(10,2)

);

CREATE TABLE Printer(

model REF(ProductType) SCOPE Product,

color CHAR(1),

type VARCHAR(10),

price DECIMAL(10,2)

);

Exercise 10.4.4

Model attribute in Products cannot be a reference to the tuple in the relation for
that type of product because that would create a circular reference situation where
the model is a reference to the relation itself which has a model attribute but is a
reference, etc. There would not be a column that stores the actual model values.

Exercise 10.4.5

CREATE TYPE ClassType AS (

class VARCHAR(30),

type CHAR(2),

country VACHAR(30),

numGuns INTEGER,

14

bore INTEGER,

disp INTEGER

);

CREATE TYPE ShipType AS (

name VARCHAR(30),

class REF(ClassType),

launched INTEGER

);

CREATE TYPE BattleType AS (

name VARCHAR(30),

date DATE

);

CREATE TYPE OutcomeType AS (

ship REF(ShipType),

battle REF(BattleType),

result VARCHAR(10)

);

CREATE TABLE Classes OF ClassType (

REF IS classID SYSTEM GENERATED

);

CREATE TABLE Ships OF ShipType(

REF IS shipID SYSTEM GENERATED

);

CREATE TABLE Battles OF TYPE BattleType(

REF IS battleID SYSTEM GENERATED

);

CREATE TABLE Outcomes OF TYPE OutcomeType(

REF IS outcomeID SYSTEM GENERATED

);

15

Section 10.5

Exercise 10.5.1

(a) SELECT star->name
FROM StarsIn

WHERE movie->title = ’Dogma’;

(b) SELECT DISTINCT movie->title, movie->year
FROM StarsIn

WHERE star->address.city() = ’Malibu’;

(c) SELECT movie
FROM StarsIn

WHERE star->name = ’Melanie Griffith’;

(d) SELECT movie->title, movie->year

FROM StarsIn

GROUP BY movie->title, movie->year

HAVING COUNT(*) >= 5;

Exercise 10.5.2

(a) SELECT model->maker
FROM PC

WHERE hd > 60;

(b) SELECT DISTINCT model->maker
FORM Printers

WHERE type = ’laser’;

(c) WITH MaxSpeedsPerMaker(maker, maxSpeed) AS(
SELECT model->maker, MAX(speed)

FROM Laptops

GROUP BY model->maker),

MakerTopModel(maker,topModel) AS(

SELECT M.maker, L.model->model

FROM Laptops L, MaxSpeedsPerMaker M

WHERE L.model->maker = M.maker

AND L.speed = maxSpeed)

16

SELECT model->model, topModel

FROM Laptops L, MakerTopModel M

WHERE L.model->maker = M.maker

;

Exercise 10.5.3

(a) SELECT x.name
FROM Ships x

WHERE x.class->disp > 35000;

(b) SELECT DISTINCT x.battle->name
FROM Outcomes x

WHERE x.result = ’sunk’;

(c) SELECT DISTINCT x.class->class
FROM Ships x

WHERE x.launched > 1930;

(d) SELECT DISTINCT x.battle->name
FROM Outcomes x

WHERE x.result = ’damaged’

AND x.ship->class->country = ’USA’;

Exercise 10.5.4

CREATE FUNCTION StarLEG(p1 StarType,

p2 StarType)

RETURNS INTEGER

IF p1.name < p2.name THEN RETURN(-1)

ELSEIF p1.name > p2.name THEN RETURN(1)

ELSE RETURN(AddrLEG(p1.address,p2.addres))

ENDIF

;

CREATE ORDERING FOR StarType

ORDERING FULL BY RELATIVE WITH StarLEG;

17

Exercise 10.5.5

CREATE PROCEDURE DeleteStar(IN pName VARCHAR(50))

BEGIN

DELETE FROM StarsIn

WHERE star->name = pName;

DELETE FROM MovieStar x

WHERE x.name = pName;

END;

Section 10.6

Exercise 10.6.1

(a) Dimension attributes are: cust, date, proc, memory, hd,od.
Dependent attributes are: quant, price.

(b) Cust(custID, name, address, phone, creditCard)
Proc(procID, manufacturer, name, model, speed)

HD(hdID, manufacturer, name, model, capacity,

cylinders, surfaces, speed)

OD(odID, manufacturer, type, capacity, speed)

Exercise 10.6.2

First we could select the number of orders that had DVD disks and the number of
orders that had CD disks. This would show just the totals overall orders.

SELECT D1.type, COUNT(*)

FROM Orders F, OD D1

WHERE F.od = D1.odID

GROUP BY D1.type

HAVING D1.type IN(’DVD’,’CD’)

;

Then we could drill-down to see what the totals are per month,hopefully seeing
that the numbers for DVDs increase and the numbers for CDs decrease.

18

SELECT MONTH(F.date) MONTHS, D1.type, COUNT(*)

FROM Orders F, OD D1

WHERE F.od = D1.odID

GROUP BY MONTHS, D1.type

HAVING D1.type IN(’DVD’,’CD’)

;

Next we could drill-up to show the totals per year.

SELECT YEAR(F.date) YEARS, D1.type, COUNT(*)

FROM Orders F, OD D1

WHERE F.od = D1.odID

GROUP BY YEARS, D1.type

HAVING D1.type IN(’DVD’,’CD’)

;

Section 10.7

Exercise 10.7.1

(a) The ratio is

(

11
10

)10

, or about 2.59.

(b) The ratio is

(

3
2

)10

, or about 57.66.

Exercise 10.7.2

(a) Assuming the column name for SUM(val) in SalesCube is val:

SELECT dealer, val

FROM SalesCube

WHERE model IS NULL

AND color = ’blue’

AND date IS NULL

AND dealer IS NOT NULL

;

(b) Assuming the column name for SUM(cnt) in SalesCube is cnt:

19

SELECT cnt

FROM SalesCube

WHERE model = ’Gobi’

AND color = ’green’

AND date IS NULL

AND dealer = ’Smilin’’ Sally’

;

(c) Assuming the column names for SUM(cnt) and SUM(val) in SalesCube are
cnt and val:

SELECT val/cnt

FROM SalesCube

WHERE model = ’Gobi’

AND color IS NULL

AND YEAR(date) = 2007

AND MONTH(date) = 3

AND dealer IS NOT NULL

;

Exercise 10.7.3

The rollup would not help and would make it more difficult to ensure that we do
not double count the rows and only consider the rows that are in CUBE(Sales) but
not in Sales.

Exercise 10.7.4

CREATE MATERIALIZED VIEW OrdersCube(

cust, date, proc, memory, hd, od, tquant, tprice)

AS(

SELECT cust, date, proc, memory, hd, od, SUM(quant), SUM(price)

FROM Orders

GROUP BY cust, date, proc, memory, hd, od)

WITH CUBE;

20

Exercise 10.7.5

(a) SELECT D1.speed, MONTH(F.date), SUM(F.tquant)
FROM OrdersCube F, Proc D1

WHERE F.proc = D1.procID

AND F.cust IS NULL

AND YEAR(F.date) = 2007

AND F.memory IS NULL

AND F.hd IS NULL,

AND F.od IS NULL

GROUP BY D1.speed, MONTH(F.date)

;

(b) SELECT D1.type, D2.type, SUM(F.tquant)
FROM OrdersCube F, Proc D1, HD D2

WHERE F.proc = D1.procID

AND F.hd = D2.hdID

AND F.cust IS NULL

AND F.date IS NULL

AND F.memory IS NULL

AND F.od IS NULL

GROUP BY D1.type, D2.type

;

(c) SELECT MONTH(F.date), SUM(tprice)/SUM(F.tquant)
FROM OrdersCube F, Proc D1

WHERE F.proc = D1.procID

AND D1.speed = 3.0

AND F.cust IS NULL

AND F.date >= ’01/01/2005’

AND F.memory IS NULL

AND F.hd IS NULL,

AND F.od IS NULL

GROUP BY MONTH(F.date)

;

21

Exercise 10.7.6

Yes, other rollups could contain these tuples. Those rollups can be formed by
rearranging the group by list so that columns we need to be aggregated are at the
tail of the list. For instance, to include tuple

(’Gobi’, NULL, ’2001-05-21’, ’Friendly Fred’, 152000, 7)

The group by list would be:

GROUP BY model, date, dealer, color WITH ROLLUP

Exercise 10.7.7

In the worst case, the fact table could have only one row, the CUBE(F) would add
an additional 2n tuples, and so the ratio would be 2n.

22

