7.1.1
a)

CREATE TABLE Movies (
title

CHAR(100),

year

INT,
length

INT,

genre

CHAR(10),

studioName
CHAR(30),

producerC#
INT,

PRIMARY KEY (title, year),
FOREIGN KEY (producerC#) REFERENCES MovieExec(cert#)

);

or

CREATE TABLE Movies (

title

CHAR(100),

year

INT,

length

INT,

genre

CHAR(10),

studioName
CHAR(30),

producerC#
INT
REFERENCES MovieExec(cert#),

PRIMARY KEY (title, year)
);

b)

CREATE TABLE Movies (

title

CHAR(100),

year

INT,

length

INT,

genre

CHAR(10),

studioName
CHAR(30),

producerC#
INT
REFERENCES MovieExec(cert#)

ON DELETE SET NULL

ON UPDATE SET NULL,

PRIMARY KEY (title, year)

);

c)
CREATE TABLE Movies (

title

CHAR(100),

year

INT,

length

INT,

genre

CHAR(10),

studioName
CHAR(30),

producerC#
INT
REFERENCES MovieExec(cert#)

ON DELETE CASCADE

ON UPDATE CASCADE,

PRIMARY KEY (title, year)

);

d)

CREATE TABLE StarsIn (

movieTitle
CHAR(100) REFERENCES Movie(title),

movieYear
INT,

starName
CHAR(30),

PRIMARY KEY (movieTItle, movieYear, starName)

);

e)
CREATE TABLE StarsIn (

movieTitle
CHAR(100) REFERENCES Movie(title)

ON DELETE CASCADE,
movieYear
INT,

starName
CHAR(30),

PRIMARY KEY (movieTItle, movieYear, starName)

);

7.1.2
To declare such a foreign-key constraint between the relations Movie and StarsIn, values of the referencing attributes in Movie should appear in MovieStar as unique values. However, based on primary key declaration in relation StarIn, the uniqueness of movies is guaranteed with movieTitle, movieYear, and starName attributes. Even with title and year as referencing attributes there is no way of referencing unique movie from StarsIn without starName information. Therefore, such a constraint can not be expressed using a foreign-key constraint.

7.1.3
ALTER TABLE Product

ADD PRIMARY KEY (model);

ALTER TABLE PC

ADD FOREIGN KEY (model) REFERENCES Product (model);
ALTER TABLE Laptop

ADD FOREIGN KEY (model) REFERENCES Product(model);
ALTER TABLE Printer

ADD FOREIGN KEY (model) REFERENCES Product (model);

7.1.4
ALTER TABLE Classes

ADD PRIMARY KEY (class);

ALTER TABLE Ships

ADD PRIMARY KEY (name);
ALTER TABLE Ships

ADD FOREIGN KEY (class) REFERENCES Classes (calss);

ALTER TABLE Battles

ADD PRIMARY KEY (name);

ALTER TABLE Outcomes

ADD FOREIGN KEY (ship) REFERENCES Ships (name);
ALTER TABLE Outcomes

ADD FOREIGN KEY (battle) REFERENCES Battles (name);

7.1.5
a)

ALTER TABLE Ships

ADD FOREIGN KEY (class) REFERENCES Classes (class)

 ON DELETE SET NULL

 ON UPDATE SET NULL;

In addition to the above declaration, class must be declared the primary key for Classes.

b)

ALTER TABLE Outcome

ADD FOREIGN KEY (battle) REFERENCES Battles (name)

 ON DELETE SET NULL

 ON UPDATE SET NULL;

c)

ALTER TABLE Outcomes

ADD FOREIGN KEY (ship) REFERENCES Ships (name)

 ON DELETE SET NULL

 ON UPDATE SET NULL;

7.2.1
a)

year

INT
CHECK (year >= 1915)

b)

length

INT
CHECK (length >= 60 AND length <= 250)

c)

studioName
CHAR(30)

 CHECK (studioName IN (‘Disney’, Fox’, ‘MGM’, ‘Paramount’))

7.2.2

a)
CREATE TABLE Laptop (

 …

 speed

DECIMAL(4,2)
CHECK (speed >= 2.0)

…

);

b)

CREATE TABLE Printer (

 …

 type

VARCHAR(10)

 CHECK (type IN (‘laser’, ‘ink-jet’, ‘bubble-jet’))

…

);

c)

CREATE TABLE Product (

 …

 type

VARCHAR(10)

 CHECK (type IN(‘pc’, ‘laptop’, ‘printer’))

 …

);

d)

CREATE TABLE Product (

 …

 model

CHAR(4)

 CHECK (model IN (SELECT model FROM PC

UNION ALL

 SELECT model FROM laptop

UNION ALL

 SELECT model FROM printer))
 …

);

* note this doesn’t check the attribute constraint violation caused by deletions from PC, laptop, or printer
7.2.3

a)
CREATE TABLE StarsIn (

 …

 starName CHAR(30)

 CHECK (starName IN (SELECT name FROM MovieStar

 WHERE YEAR(birthdate) > movieYear))
…

);

b)
CREATE TABLE Studio (

…

 address CHAR(255)
CHECK (address IS UNIQUE)

…

);

c)

CREATE TABLE MovieStar (

 …

 name CHAR(30)
CHECK (name NOT IN (SELECT name FROM MovieExec))

…

);

d)
CREATE TABLE Studio (

 …

Name CHAR(30)
CHECK (name IN (SELECT studioName FROM Movies))
…

);

e)
CREATE TABLE Movies (

 …

CHECK (producerC# NOT IN (SELECT presC# FROM Studio) OR

 studioName IN (SELECT name FROM Studio

 WHERE presC# = producerC#))

…

);

7.2.4

a)

CHECK (speed >= 2.0 OR price <= 600)

b)

CHECK (screen >= 15 OR hd >= 40 OR price <= 1000)

7.2.5

a)

CHECK (class NOT IN (SELECT class FROM Classes

 WHERE bore > 16))

b)

CHECK (class NOT IN (SELECT class FROM Classes

WHERE numGuns > 9 AND bore > 14))

c)

 CHECK (ship IN (SELECT s.name FROM Ships s, Battles b, Outcomes o

 WHERE s.name = o.ship AND

 b.name = o.battle AND

 s.launched > YEAR(b.date)))

7.2.6

The constraint in Example 7.6 does not allow NULL value for gender while the constraint in Example 7.8 allows NULL.

7.3.1

a)

ALTER TABLE Movie ADD CONSTRAINT myKey

PRIMARY KEY (title, year);

b)

ALTER TABLE Movie ADD CONSTRAINT producerCheck

FOREIGN KEY (producerC#) REFERENCES MovieExec (cert#);

c)

ALTER TABLE Movie ADD CONSTRAINT lengthCheck

CHECK (length >= 60 AND length <= 250);

d)

ALTER TABLE MovieStar ADD CONSTRAINT noDupInExec

 CHECK (name NOT IN (SELECT name FROM MovieExec));

ALTER TABLE MovieExec ADD CONSTRAINT noDupInStar

 CHECK (name NOT IN (SELECT name FROM MovieStar));

e)

ALTER TABLE Studio ADD CONSTRAINT noDupAddr

CHECK (address is UNIQUE);

7.3.2

a)

ALTER TABLE Classes ADD CONSTRAINT myKey

PRIMARY KEY (class, country);

b)

ALTER TABLE Outcomes ADD CONSTRAINT battleCheck

FOREIGN KEY (battle) REFERENCES Battles (name);

c)

ALTER TABLE Outcomes ADD CONSTRAINT shipCheck

FOREIGN KEY (ship) REFERENCES Ships (name);

d)

ALTER TABLE Ships ADD CONSTRAINT classGunCheck

CHECK (class NOT IN (SELECT class FROM Classes

 WHERE numGuns > 14));
e)

ALTER TABLE Ships ADD CONSTRAINT shipDateCheck

 CHECK (ship IN (SELECT s.name FROM Ships s, Battles b, Outcomes o

 WHERE s.name = o.ship AND

 b.name = o.battle AND

 s.launched >= YEAR(b.date)))

7.4.1

a)

CREATE ASSERTION CHECK

 (NOT EXISTS

 (

 (SELECT maker FROM Product NATURAL JOIN PC)

 INTERSECT

 (SELECT maker FROM Product NATURAL JOIN Laptop)

)

);

b)

CREATE ASSERTION CHECK

 (NOT EXISTS

 (SELECT maker

 FROM Product NATURAL JOIN PC

 WHERE speed > ALL

 (SELECT L2.speed

 FROM Product P2, Laptop L2

 WHERE P2.maker = maker AND

 P2.model = L2.model

)

)

);

c)

CREATE ASSERTION CHECK

 (NOT EXISTS

 (SELECT model

 FROM Laptop

 WHERE price <= ALL

(SELECT price FROM PC

 WHERE PC.ram < Laptop.ram

)

)

)

);

d)

CREATE ASSERTION CHECK

 (EXISTS

 (SELECT p2.model FROM Product p1, PC p2

 WHERE p1.type = ‘pc’ AND

 P1.model = p2.model)

 UNION ALL

 (SELECT l.model

 FROM Product p, Laptop l

 WHERE p.type = ‘laptop’ AND

 p.model = l.model)

 UNION ALL

 (SELECT p2.model

 FROM Product p1, Printer p2

 WHERE p1.type = ‘printer’ AND

 P1.model = p2.model)

);

7.4.2

a)

CREATE ASSERTION CHECK

 (2 >= ALL

(SELECT COUNT(*) FROM Ships GROUP BY class)

);

b)

CREATE ASSERTION CHECK

 (NOT EXISTS

(SELECT country FROM Classes

 WHERE type = ‘bb’

)

INTERSECT

(SELECT country FROM Classes

 WHERE type = ‘bc’

)

);

c)

CREATE ASSERTION CHECK

 (NOT EXISTS

(SELECT o.battle FROM Outcomes o, Ships s, Classes c

 WHERE o.ship = s.name AND s.class = c.class AND c.numGuns > 9

)

 INTERSECT

(SELECT o.battle FROM Outcomes o, Ships s, Classes c

 WHERE o.result = ‘sunk’ AND o.ship = s.name AND

 s.class = c.class AND c.numGuns < 9

)

);

d)
CREATE ASSERTION CHECK

 (NOT EXISTS

(SELECT s1.name FROM Ships s1

 WHERE s1.launched < (SELECT s2.launched FROM Ships s2

 WHERE s2.name = s1.class

)

)

);

e)

CREATE ASSERTION CHECK

 (ALL (SELECT class FROM Classes c)

 IN (SELECT class FROM Ships GROUP BY class)

);

7.4.3
1)

presC# INT CHECK

(presC# IN (SELECT cert# FROM MovieExec

 WHERE netWorth >= 10000000

)

)

2)

presC# INT Check

(presC# NOT IN (SELECT cert# FROM MovieExec

 WHERE netWorth < 10000000

)

)

7.5.1

CREATE TRIGGER AvgNetWorthTrigger

AFTER INSERT ON MovieExec

REFERENCING

NEW TABLE AS NewStuff

FOR EACH STATEMENT

WHEN (500000 > (SELECT AVG(netWorth) FROM MovieExec))

DELETE FROM MovieExec

WHERE (name, address, cert#, netWorth) IN NewStuff;

CREATE TRIGGER AvgNetWorthTrigger

AFTER DELETE ON MovieExec

REFERENCING

OLD TABLE AS OldStuff

FOR EACH STATEMENT

WHEN (500000 > (SELECT AVG(netWorth) FROM MovieExec))

INSERT INTO MovieExec

(SELECT * FROM OldStuff);

7.5.2

a)

CREATE TRIGGER LowPricePCTrigger

AFTER UPDATE OF price ON PC

REFERENCING

OLD ROW AS OldRow,

OLD TABLE AS OldStuff,

NEW ROW AS NewRow,

NEW TABLE AS NewStuff

FOR EACH ROW

WHEN (NewRow.price < ALL

(SELECT PC.price FROM PC

 WHERE PC.speed = NewRow.speed))

BEGIN

DELETE FROM PC

WHERE (model, speed, ram, hd, price) IN NewStuff;

INSERT INTO PC

(SELECT * FROM OldStuff);

END;

b)

CREATE TRIGGER NewPrinterTrigger

AFTER INSERT ON Printer

REFERENCING

NEW ROW AS NewRow,

NEW TABLE AS NewStuff

FOR EACH ROW

WHEN (NOT EXISTS (SELECT * FROM Product

 WHERE Product.model = NewRow.model))

DELETE FROM Printer

WHERE (model, color, type, price) IN NewStuff;

c)

CREATE TRIGGER AvgPriceTrigger

AFTER UPDATE OF price ON Laptop

REFERENCING

OLD TABLE AS OldStuff,

NEW TABLE AS NewStuff

FOR EACH STATEMENT

WHEN (1500 > (SELECT AVG(price) FROM Laptop))

BEGIN

DELETE FROM Laptop

WHERE (model, speed, ram, hd, screen, price) IN NewStuff;

INSERT INTO Laptop

(SELECT * FROM OldStuff);

END;

d)

CREATE TRIGGER HardDiskTrigger

AFTER UPDATE OF hd, ram ON PC

REFERENCING

OLD ROW AS OldRow,

OLD TABLE AS OldStuff,

NEW ROW AS NewRow,

NEW TABLE AS NewStuff

FOR EACH ROW

WHEN (NewRow.hd < NewRow.ram * 100)

BEGIN

DELETE FROM PC

WHERE (model, speed, ram, hd, price) IN NewStuff;

INSERT INTO PC

(SELECT * FROM OldStuff);

END;

e)

CREATE TRIGGER DupModelTrigger

BEFORE INSERT ON PC, Laptop, Printer

REFERENCING

NEW ROW AS NewRow,

NEW TABLE AS NewStuff

FOR EACH ROW

WHEN (EXISTS (SELECT * FROM NewStuff NATUAL JOIN PC)

 UNION ALL

 (SELECT * FROM NewStuff NATUAL JOIN Laptop)

 UNION ALL

 (SELECT * FROM NewStuff NATUAL JOIN Printer))

BEGIN

SIGNAL SQLSTATE ‘10001’

 (‘Duplicate Model – Insert Failed’);

END;

7.5.3

a)

CREATE TRIGGER NewClassTrigger

AFTER INSERT ON Classes

REFERENCING

NEW ROW AS NewRow

FOR EACH ROW

BEGIN

INSERT INTO Ships (name, class, lunched)

VALUES (NewRow.class, NewRow.class, NULL);

END;

b)

CREATE TRIGGER ClassDisTrigger

BEFORE INSERT ON Classes

REFERENCING

NEW ROW AS NewRow,

NEW TABLE AS NewStuff

FOR EACH ROW

WHEN (NewRow.displacement > 35000)

UPDATE NewStuff SET displacement = 35000;

c)

CREATE TRIGGER newOutcomesTrigger

AFTER INSERT ON Outcomes

REFERENCING

NEW ROW AS NewRow

FOR EACH ROW

WHEN (NewRow.ship NOT EXISTS (SELECT name FROM Ships))

INSERT INTO Ships (name, class, lunched)

VALUES (NewRow.ship, NULL, NULL);

CREATE TRIGGER newOutcomesTrigger2

AFTER INSERT ON Outcomes

REFERENCING

NEW ROW AS NewRow

FOR EACH ROW

WHEN (NewRow.battle NOT EXISTS (SELECT name FROM Battles))

INSERT INTO Battles (name, date)

VALUES (NewRow.battle, NULL);

d)
CREATE TRIGGER changeShipTrigger

AFTER INSERT ON Ships

REFERENCING

NEW TABLE AS NewStuff

FOR EACH STATEMENT

WHEN (20 < ALL

(SELECT COUNT(name) From Ships NATURAL JOIN Classes

GROUP BY country))

DELETE FROM Ships

WHERE (name, class, launched) IN NewStuff;

CREATE TRIGGER changeShipTrigger2

AFTER UPDATE ON Ships

REFERENCING

OLD TABLE AS OldStuff,

NEW TABLE AS NewStuff

FOR EACH STATEMENT

WHEN (20 < ALL

(SELECT COUNT(name) From Ships NATURAL JOIN Classes

GROUP BY country))

BEGIN

DELETE FROM Ships

WHERE (name, class, launched) IN NewStuff;

INSERT INTO Ships

(SELECT * FROM OldStuff);

END;

e)

CREATE TRIGGER sunkShipTrigger

AFTER INSERT ON Outcomes

REFERENCING

NEW ROW AS NewRow

NEW TABLE AS NewStuff

FOR EACH ROW

WHEN ((SELECT date FROM Battles WHERE name = NewRow.battle)

 < ALL

(SELECT date FROM Battles

 WHERE name IN (SELECT battle FROM Outcomes

 WHERE ship = NewRow.ship AND

 result = “sunk”

)

)

)

DELETE FROM Outcomes

WHERE (ship, battle, result) IN NewStuff;

CREATE TRIGGER sunkShipTrigger2

AFTER UPDATE ON Outcomes

REFERENCING

NEW ROW AS NewRow,

NEW TABLE AS NewStuff

FOR EACH ROW

FOR EACH ROW

WHEN ((SELECT date FROM Battles WHERE name = NewRow.battle)

 < ALL

(SELECT date FROM Battles

 WHERE name IN (SELECT battle FROM Outcomes

 WHERE ship = NewRow.ship AND

 result = “sunk”

)

)

)
BEGIN

DELETE FROM Outcomes

WHERE (ship, battle, result) IN NewStuff;

INSERT INTO Outcomes

(SELECT * FROM OldStuff);

END;

7.5.4

CREATE TRIGGER changeStarsInTrigger

AFTER INSERT ON StarsIn

REFERENCING

NEW ROW AS NewRow,

FOR EACH ROW

WHEN (NewRow.starName NOT EXISTS

(SELECT name FROM MovieStar))

INSERT INTO MovieStar(name)

 VALUES(NewRow.starName);

CREATE TRIGGER changeStarsInTrigger2

AFTER UPDATE ON StarsIn

REFERENCING

NEW ROW AS NewRow,

FOR EACH ROW

WHEN (NewRow.starName NOT EXISTS

(SELECT name FROM MovieStar))

INSERT INTO MovieStar(name)

 VALUES(NewRow.starName);

b)

CREATE TRIGGER changeMovieExecTrigger

AFTER INSERT ON MovieExec

REFERENCING

NEW ROW AS NewRow,

FOR EACH ROW

WHEN (NewRow.cert# NOT EXISTS

(SELECT presC# FROM Studio)

 UNION ALL

 SELECT producerC# FROM Movies)

)

INSERT INTO Movies(procucerC#)

 VALUES(NewRow.cert#);

* insert into the relation Movies rather than Studio since there’s no associated info with Studio.

CREATE TRIGGER changeMovieExecTrigger2

AFTER UPDATE ON MovieExec

REFERENCING

NEW ROW AS NewRow,

FOR EACH ROW

WHEN (NewRow.cert# NOT EXISTS

(SELECT presC# FROM Studio)

 UNION ALL

 SELECT producerC# FROM Movies)

)

INSERT INTO Movies(procucerC#)

 VALUES(NewRow.cert#);

c)

CREATE TRIGGER changeMovieTrigger

AFTER DELETE ON MovieStar

REFERENCING

OLD TABLE AS OldStuff,

FOR EACH STATEMENT

WHEN (1 > ALL (SELECT COUNT(*) FROM StarIn s, MovieStar m

WHERE s.starName = m.name

GROUP BY s.movieTitle, m.gendar)

)

INSERT INTO MovieStar

(SELECT * FROM OldStuff);

* only considering DELETE from MovieStar since the assumption was the desired condistion was satisfied before any change.

** not considering INSERT into StarsIn since no gender info can be extracted from a new row for StarsIn.

d)

CREATE TRIGGER numMoviesTrigger

AFTER INSERT ON Movies

REFERENCING

NEW TABLE AS NewStuff

FOR EACH STATEMENT

WHEN (100 < ALL

(SELECT COUNT(*) FROM Movies

GROUP BY studioName, year))

DELETE FROM Movies

WHERE (title, year, length, genre, StudioName, procedureC#)IN NewStuff;

CREATE TRIGGER numMoviesTrigger2

AFTER UPDATE ON Movies

REFERENCING

OLD TABLE AS OldStuff

NEW TABLE AS NewStuff

FOR EACH STATEMENT

WHEN (100 < ALL

(SELECT COUNT(*) FROM Movies

GROUP BY studioName, year))

BEGIN

DELETE FROM Movies

WHERE (title, year, length, genre, StudioName, procedureC#)

IN NewStuff;

INSERT INTO Movies

 (SELECT * FROM OldStuff);

END;

e)

CREATE TRIGGER avgMovieLenTrigger

AFTER INSERT ON Movies

REFERENCING

NEW TABLE AS NewStuff

FOR EACH STATEMENT

WHEN (120 < ALL

(SELECT AVG(length) FROM Movies

GROUP BY year))

DELETE FROM Movies

WHERE (title, year, length, genre, StudioName, procedureC#)IN NewStuff;

CREATE TRIGGER avgMovieLenTrigger2

AFTER UPDATE ON Movies

REFERENCING

OLD TABLE AS OldStuff

NEW TABLE AS NewStuff

FOR EACH STATEMENT

WHEN (120 < ALL

(SELECT AVG(length) FROM Movies

GROUP BY year))

BEGIN

DELETE FROM Movies

WHERE (title, year, length, genre, StudioName, procedureC#)

IN NewStuff;

INSERT INTO Movies

 (SELECT * FROM OldStuff);

END;

