
BLE Workshop
By: Ryan Holeman

Question

● How many of you here have done my BLE CTF?

Prep Work

● Make sure you have an ESP32 and micro USB cable
● Get your system setup while I talk

○ https://github.com/hackgnar/ble_ctf_infinity/blob/master/docs/workshop_setup.md

● Feel free to start the exercises while I talk
○ Beginners doing BLE_CTF v1

■ https://github.com/hackgnar/ble_ctf
○ Advanced users doing BLE_CTF_INFINITY

■ https://github.com/hackgnar/ble_ctf_infinity

● Please only connect to your MAC address
● I have some bluetooth USB dongles incase you have issues with yours

https://github.com/hackgnar/ble_ctf_infinity/blob/master/docs/workshop_setup.md
https://github.com/hackgnar/ble_ctf
https://github.com/hackgnar/ble_ctf_infinity

Honor System

● Please return your BLE_CTF chips and USB cables when you leave
● They cost money. I don’t get them for free =)
● If you want to take one home with you, I sell them for $20

Ryan Holeman

● Atlassian - Manager
○ Incident Response Team
○ Detection Team
○ Red Team

● Ziften - Advisor
● Likes skateboarding
● Master Degree from a past life
● Speak at various conferences
● AHA junkie
● Twitterz: @hackgnar

Agenda

● BLE basics
○ Protocols
○ Stacks
○ Hardware
○ Software

● Workshop essentials
○ GATT
○ BLE CTF
○ Tools

● Training
○ +20 exercises

Warning!!!

● Many things I say during this
class will not be 100% accurate

● I use a lot of analogies and
comparisons to accelerate your
understanding

● Be responsible with what you
learn!

Hold On!

● Things are going to get a bit
technical in the next few
slides

● Don’t worry if you don't
understand it all

● You don’t need to
understand wifi and tcp in
order to do web application
hacking

Bluetooth - BLE vs Basic Rate

● BLE (aka Smart, 4.0)
○ Our focus for today
○ More prevalent now-a-day
○ Less channels - 32
○ Easier to sniff

● Basic Rate (aka Classic, 2.0)
○ More channels - 89
○ Focus area of tools, talks & hardware older than 3-5 years ago
○ Harder to sniff and discover
○ Still in use today

■ Devices with bigger batteries
■ Keyboards, cars, etc

Client Server Topology

● Master
○ i.e. your computer or phone

● Slave
○ i.e. your watch, earphones, mouse,

keyboard, heart rate monitor, etc

Connection Types

● Paired vs Unpaired
● Authentication

○ In band
○ Out of band

● Encryption

● Most of this is typically handled via OS abstraction
● It is also limited by the master’s service implementation

Bluetooth Stacks

Bluetooth Stacks

Hardware

● One of the main questions I
get from people

● Also one of the most
misunderstood areas of
people getting into Bluetooth

Hardware

● What’s it all do???
● What do I need?

Hardware - Categories

● Standard Bluetooth modules
○ Your computer bluetooth chip
○ UD100
○ Bluetooth usb dongles

● IOT devices
○ Esp32
○ Microbit
○ Nordic based devices

● Sniffers
○ Ubertooth
○ Hackrf & other SDR devices

● Hybrids
○ Nordic chips (Microbit, Adafruit sniffer, etc)

Hardware - Standard Bluetooth Modules

● Likely all most people need
● Allows you to host bluetooth

services or connect to bluetooth
devices over the standard
bluetooth protocol

● Some support different
protocols (i.e. 3.0, 4.0, BTBR,
BLE, etc)

● Some have different ranges
○ Class 1-3

● Some support external antennas
○ UD100

Software - Standard Bluetooth Modules

● hciconfig
○ Basically ifconfig for bluetooth interfaces
○ sudo hciconfig -a

● hcitool
○ Kind of like iwlist for bluetooth interfaces
○ sudo hcitool lescan

● gatttool
○ Kind of like curl for bluetooth
○ sudo gatttool -i hci0 -b DE:AD:BE:EF:12:34 --characteristics

● bleah
○ A pretty printed display of GATT characteristics
○ sudo bleah -b DE:AD:BE:EF:12:34 -e

Hardware - Sniffers

● Allow you to passively sniff
bluetooth traffic

● Can be used for various types of
injection or BT protocol
simulation

● Can not be used as typical
Bluetooth host OS devices

● Operate at the PHY layer
● Require custom firmware & host

software
● Come in various different flavors
● Not needed for this workshop

Software - Sniffers

● ubertooth-btle
○ Ubertooth host software for interacting with your ubertooth
○ sudo ubertooth-btle -tDE:AD:BE:EF:12:34
○ sudo ubertooth-btle -f -r bt.pcap

● Adafruit_BLESniffer_Python
○ Cool curses method for creating pcaps
○ sudo python sniffer.py /dev/ttyUSB0

● btlejack
○ Sniffer and injector tool and firmware for microbit
○ Cool stuff… haven’t played with it too much yet

● Various SDR tools & libs

Hardware - BT Devices, IOT Devices & Hybrids

● Can host firmware to act as
standard BT clients or servers

● Some can be used as sniffers
○ Nordic 4x & 5x based chipsets

● Firmware libraries depend on
chipsets

● Capabilities vary based on
firmware api support

● Mostly all C code based

Let’s Step Back

● Bluetooth is crazy!
● We will only be focusing on the

least crazy today
○ Standard BT software
○ GATT

● In Bluetooth land you can think of
GATT kind of like HTTP in network
land

● Lets make some horribly untrue
comparisons of GATT and HTTP

5 MINUTE BREAK

● Try running the following on your computer:

Agenda - What’s Next?

● Dirty GATT overview
● BLE CTF overview
● Tools primer

GATT

● Lies
○ The HTTP of Bluetooth
○ Think of a GATT server as a web site

● Technicalz
○ The most typical type of service hosted in BLE
○ When you scan for BLE and connect you are most always connecting to a GATT server
○ Only one client can connect to a GATT server at a time
○ Most do not require authentication & encryption
○ Some will require auth and encryption access functionality

GATT Characteristics

● The URLs of GATT
● They are represented by UUIDs on the GATT server
● Also denoted by handles in most Linux apps
● Characteristics come in 2 forms

○ Predefined by bluetooth standards
■ i.e. battery status, names, device types, etc

○ Custom
■ Custom code underneath that developers created specifically for their GATT

application
■ i.e. change your riding mode on an electric skateboard

● Most devices typically host 5-10 characteristics\handles

GATT Characteristics

HTTP URLS GATT Characteristics

GATT Methods

● Read
○ The HTTP GET method of Bluetooth
○ curl http://google.com
○ gatttool -b 11:22:33:44:55:66 --char-read -a 0x0011

● Write
○ The HTTP POST method of Bluetooth
○ curl -d "param1=value1¶m2=value2" -X POST http://localhost:3000/data
○ gatttool -b 11:22:33:44:55:66 --char-write -a 0x0011 -n 0x1337

● Notify
○ Streams data when you subscribe or listen to it
○ gatttool -b 11:22:33:44:55:66 --char-read -a 0x0011 --listen

● Indicate
○ Much like notify, but requires acks

http://google.com
http://localhost:3000/data

GATT Methods

GATT Methods

BLE CTF

● Built by yours truly
● A series of BLE GATT exercises in

CTF format
● Built on the ESP32

○ Super cheap microcontrollers
○ Nice C API
○ BLE, WiFi, USB stuff, Blinky LEDs

● Custom firmware

BLE CTF

● Why did I build this???
● There were no great resources for

learning BLE
● Low cost of entry
● Get more people involved with

BLE
● I had never written GATT servers

before and wanted to try

BLE CTF

● Comes in 2 versions
● Version 1 - BLE_CTF

○ What we are using today!
○ Released last year
○ Teaches the basics of BLE
○ No Bluetooth experience required
○ Only requires a Linux box and

standard Bluetooth connectivity to
use

○ Very monolithic in nature
○ Has like 30ish characteristics
○ Firmware is not very modular
○ Does not allow for more advanced

challenges
○ No persistence

BLE CTF

● Comes in 2 versions
● Version 2 - BLE_CTF_INFINITY

○ Extremely modular
■ People can contribute new flags

○ Hosts 20 stand alone GATT servers on
one chip

■ WHAT! How you do that?
○ Authentication based challenges
○ Encryption based challenges
○ Client/server based challenges
○ Dirty dirty dirty GATT tricks
○ Dynamically include flags values and

challenges
○ Persistent on reboot

Tools

● Linux box
○ Or Vagrant on OSX/Windows

● Bluetooth module in your computer or a USB dongle
● Bluetooth software

○ Gatttool
○ Hcitool
○ Bleah - optional
○ bluetoothctl

● Bash Commands
○ Xdd
○ Echo
○ Md5sum
○ Tr
○ For loops

Tools - Software - hcitool

● Hcitool is great for scanning for connectable devices
● You will typically use the following to scan for BLE

○ hcitool lescan

● Some versions of hcitool dedup results, some dont
● For versions that don’t it’s useful to pipe results though grep if you know a

BT mac address or BT device name
○ hcitool lescan |grep -i ctf

Tools - Software - hcitool

Tools - Software - gatttool

● gatttool is great for connecting to GATT servers to enumerate
characteristics, do read, do writes, etc

● To list characteristics/handles of a GATT server
○ gatttool -b 11:22:33:44:55:66 --characteristics

● To read a characteristic/handle value
○ gatttool -b 11:22:33:44:55:66 --char-read -a 0x0011

● To write a characteristic/handle value
○ gatttool -b 11:22:33:44:55:66 --char-write -a 0x0011 -n 0x1337

● You can also do persistent connections to a GATT server
○ gatttool -b 11:22:33:44:55:66 -I

● --help-all is your friend
○ gatttool --help-alll

Tools - Software - bleah

● Bleah is a great visualization tool for BLE
○ Created by @evilsocket

● Provides functionality to scan BLE devices like hcitool
● Provides functionality to do mass reads across all characteristics/handles
● It also provides functionality to read/write like gatttool with the addition of

ascii support
● Recently deprecated but still available via forks
● Totally optional for this workshop
● Easier to install with python2

○ With python3 you will have to edit some code here and there

Tools - Software - bleah

Tools - Software - bash commands

● Xdd
○ Useful for converting hex => ascii and vise versa in gatttool
○ For hex to ascii use xxd -r -p
○ For ascii to hex use xxd -ps
○ gatttool -b de:ad:be:ef:be:f1 --char-read -a 0x002a|awk -F':' '{print $2}'|tr -d ' '|xxd -r -p;printf

'\n'

● Echo
○ Nothing crazy here, just remember that the -n flag strips newlines. This is useful for

sending flag values

● Tr, awk & for loops
○ Nothing crazy here either… just useful for managing strings and connection loops

15 MINUTE BREAK

● Make sure you have your computer setup

Flag 1

github.com/hackgnar/ble_ctf/doc

Flag one is a gift! You can only obtain it by reading this document or peaking at the source code. In
short, this flag is to get you familiar with doing a simple write to a BLE handle. Do the following to get
your first flag. Make sure you replace the MAC address in the examples below with your devices mac
address!

First, check out your score:

gatttool -b de:ad:be:ef:be:f1 --char-read -a 0x002a|awk -F':' '{print
$2}'|tr -d ' '|xxd -r -p;printf '\n'

Next, lets submit the following flag. gatttool -b de:ad:be:ef:be:f1 --char-write-req
-a 0x002c -n $(echo -n "12345678901234567890"|xxd -ps)

Finally, check out your score again to see your flag got accepted:
gatttool -b de:ad:be:ef:be:f1 --char-read -a 0x002a|awk -F':' '{print
$2}'|tr -d ' '|xxd -r -p;printf '\n'

Extra Credit

● If you have an ubertooth or nordic sniffer, try sniffing your connections as
you work the exercises

○ sudo ubertooth-btle -tDE:AD:BE:EF:12:34
○ sudo ubertooth-btle -f -r bt.pcap

● Read your pcaps with tshark or wireshark
○ tshark -r bt.pcap -x -V

● Look for read or write values that went clear text over the wire
○ tshark -r bt.pcap -x -V -Y 'btatt.opcode == 0x0b’

Contributions

● BLE CTF Infinity is very modular
● I wrote some docs on how to write your own flags:

○ https://github.com/hackgnar/ble_ctf_infinity/blob/master/docs/contributing.md

● Feel free to ask me to create specific challenges, but ultimately, it’s a lot
more rad if you do it yourself =)

https://github.com/hackgnar/ble_ctf_infinity/blob/master/docs/contributing.md

Fin

Ryan Holeman

● @hackgnar
● github/hackgnar

