VLSI CONTROLLED DOCUMENT
Solution Yy

VS1003B DTMF EXAMPLES

VSMPG “VLSI Solution Audio Decoder”

Project Code:
Project Name: VSMPG

Revision History

Rev. Date Author | Description
0.5 2009-02-02 | PO Initial version

Rev. 0.5 2009-02-02 Page 1(6)

VLSI

Solution Y
PO 1. VS1003B CODE EXAMPLES

VS1003B DTMF EXAMPLES VSMPG

1 VS1003B Code Examples

This package contains a working setup for user code development for VS10xx. In addi-
tion you need VSKIT and a perl interpreter. Read the tools manual from the VSKIT
distribution for general VSDSP coding tips, and tool usage documentation.

Included:

e Makefile - project makefile for command file

e mem _desc.vs1003 - VS1003B memory map for linking

e rom1003.txt - absolute address definitions for VS1003B

e vs1003.h - the most useful definitions and function prototypes
e c.s - ASM stub and hookup code, ADC interrupt stub

e mycodec.c - C code for startup, idle hook, and user codec

e coff2cmd.pl - converts a COFF executable into command file

e cmdtotab.pl - converts a command file into C arrays
Generated:

e mycodec.bin - application executable

e mycodec.cmd - application loading command script
e mycodec.plg - application plugin tables

e mycodectab.c - application loading tables as C code

This DTMF example generates versions for vs1011e, vs1002d, vs1003b, vs1033c, vs1033d,
and vs1053b.

Rev. 0.5 2009-02-02 Page 2(6)

VLSI

Solution Yy

VS1003B DTMF EXAMPLES VSMPG

PO 1. VS1003B CODE EXAMPLES
1.1 Application Hook
The application hook code receives all samples that are going to the audio buffer. This
way the samples can be easily manipulated regardless what the actual audio decoder
generates. In this example sine signals are added on top of the original decoded signal.
The application hook is set using the SCI_ATADDR register. In this example c.s con-
tains a jump instruction in a fixed address, so by writing 0x30 (0x50 for VS1053) to
SCI_ATADDR will enable calling our ApplAddr() function, and writing 0 to SCI_ATADDR
will disable it.
The application address routine will also be called for other things than audio data, so
the mode must be checked. For example when SCI_LATADDR is written (to enable the
hook), the application address is called with APPL_RESET.
s_int16 ApplAddr(register __iO s_int16 **d, register __al s_int16 mode,
register __a0 s_int16 n) {
if (mode == APPL_RESET) {
aictrl0 = 0;
aictrll = 0;
rate = 0;
memset (sines, 0, sizeof(sines));
}
if (mode == APPL_AUDIO) {
}
return n;
}
In the example APPL_RESET performs a couple of initializations.
Rev. 0.5 2009-02-02 Page 3(6)

VLSI

Solution Yy

PO

VS1003B DTMF EXAMPLES VSMPG

1. VS1003B CODE EXAMPLES

1.2 Activation and Deactivation

1. Load the plugin after each harware or software reset. (See chapter 2 or 3.)
2. Set appropriate parameters to AICTRL registers.

3. Activate the plugin by writing 0x30 to SCI_ATADDR. (Use 0x50 for VS1053.)

The default compile generates a separate sine to left and right channels.

The frequencies are controlled by AICTRLO and AICTRL1. The volume of the sines are
controlled with AICTRL2. The original signal volume can be controlled using AICTRLS3.
Both volume controls are linear, so that Oxffff is maximum volume, 0x8000 is -6dB, 0x4000
is -12dB, etc.

For example to get a 2000Hz tone to both channels with -24dB level, set AICTRLO =
2000, AICTRL1 = 2000, AICTRL2 = 0x1000, AICTRL3 = 0xffff.

You can also change the parameters during sine generation.
To deactivate: write 0 to SCI_LAICTRL.
To reactivate: write 0x30 (or 0x50 for VS1053) to SCI_ATADDR.

If you need more accurate frequency control than 1Hz, change the PH_.SCALE define
in addsine.s and recompile. The scaling will change by 2F7-SCALE g4 for example by
setting PH_SCALE to 2 you have 0.25 Hz resolution.

Rev. 0.5

2009-02-02 Page 4(6)

VLSI

Solution Yy

VS1003B DTMF EXAMPLES VSMPG

PO 2. HOW TO LOAD A PLUGIN
[]
2 How to Load a Plugin
A plugin file (.plg) contains a data file that contains one unsigned 16-bit array called
plugin. The file is in an interleaved and RLE compressed format. An example of a
plugin array is:
const unsigned short plugin[10] = { /* Compressed plugin */
0x0007, 0x0001, 0x8260,
0x0006, 0x0002, 0x1234, 0x5678,
0x0006, 0x8004, Oxabcd,
};
The vector is decoded as follows:
1. Read register address number addr and repeat number n.
2. If (n & 0x8000U), write the next word n times to register addr.
3. Else write next n words to register addr.
4. Continue until array has been exhausted.
The example array first tells to write 0x8260 to register 7. Then write 2 words, 0x1234
and 0x5678, to register 6. Finally, write Oxabcd 4 times to register 6.
Assuming the array is in plugin[], a full decoder in C language is provided below:
void WriteVS10xxRegister(unsigned short addr, unsigned short value);
void LoadUserCode(void) {
int i = 0;
while (i<sizeof (plugin)/sizeof (plugin[0])) {
unsigned short addr, n, val;
addr = plugin[i++];
n = plugin[i++];
if (n & 0x8000U) { /* RLE run, replicate n samples */
n &= Ox7FFF;
val = plugin[i++];
while (n--) {
WriteVS10xxRegister(addr, val);
}
} else { /* Copy run, copy n samples */
while (n--) {
val = plugin[i++];
WriteVS10xxRegister(addr, val);
}
}
}
}
Rev. 0.5 2009-02-02 Page 5(6)

VLSI

Solution Yy

PO

VS1003B DTMF EXAMPLES VSMPG

3. HOW TO USE OLD LOADING TABLES

3 How to Use Old Loading Tables

Each patch contains two arrays: atab and dtab. dtab contains the data words to write,
and atab gives the SCI registers to write the data values into. For example:

const unsigned char atab[] = { /* Register addresses */
7, 6, 6, 6, 6

s

const unsigned short dtab[] = { /* Data to write */
0x8260, 0x0030, 0x0717, 0xb080, 0x3cl7

s

These arrays tell to write 0x8260 to SC_LWRAMADDR (register 7), then 0x0030, 0x0717,
0xb080, and 0x3c17 to SCL.WRAM (register 6). This sequence writes two 32-bit instruc-
tion words to instruction RAM starting from address 0x260. It is also possible to write
16-bit words to X and Y RAM. The following code loads the patch code into VS10xx
memory.

/* A prototype for a function that writes to SCI */
void WriteVS10xxRegister(unsigned char sciReg, unsigned short data);

void LoadUserCode(void) {
int i;
for (i=0;i<sizeof(dtab)/sizeof (dtab[0]);i++) {
WriteVS10xxRegister(atab[i]/*SCI register*/, dtabl[i]/*data word*/);
}
}

Patch code tables use mainly these two registers to apply patches, but they may also
contain other SCI registers, especially SCI_.ATADDR (10), which is the application code
hook.

If different patch codes do not use overlapping memory areas, you can concatenate the
data from separate patch arrays into one pair of atab and dtab arrays, and load them
with a single LoadUserCode ().

Rev. 0.5

2009-02-02 Page 6(6)

