Rozdzial 3

Algebra liniowa

W tym rozdziale zajmiemy si¢ badaniem wtlasnosci pewnej struktury alge-
braicznej, zwanej przestrzenia liniowa (wektorowa), stanowiacej uogélnienie
klasycznej geometrii euklidesowej. Wprowadzane okreslenia pozwola przeniesé
miedzy innymi pewne geometryczne wtasnosci pojecia wektora na obiekty ta-
kie jak macierze, wielomiany, funkcje, itp.

3.1 Przestrzenie liniowe

W pierwszym kroku zdefiniujemy strukture algebraiczng zbudowana z niepu-
stego zbioru elementéw nazywanych wektorami, w ktorej okre§lamy dwa dzia-
tania: dodawanie wektor6w i mnozenie wektora przez skalar w taki sposéb,
by spelnione byly np. podstawowe wlasnosci obu tych dzialtan w klasycznym
rachunku wektoré6w na ptaszczyznie. Wprowadzamy nastepujace pojecie.

Definicja 3.1.1. (Przestrzen liniowa) Niech struktura (X, ®,®, e, f) bedzie
ciatem. Przez przestrzen liniowq (wektorowg) V nad ciatem X nazywamy
strukture algebraiczng (V, X,0, e) ztozong ze zbioru V, ktdrego elementy na-
zywamy wektorami, z dziataniem wewnetrznym dodawania V2 > (u,v) — uldv
o wtasnosciach:

L1:¥V u,v,w eV (u0v)Dw = ubd(vbOw) - dziatanie O jest tgczne,

L2:30€V VueV 0UOu =ull0 = u - istnieje wektor 0 bedgcy modutem
dodawania wektorow [,

L3:NYueV 3 (—u) € Vul(—u) = (—u)Ou = 0 - wektor (—u) nazywamy
wektorem przeciwnym (elementem przeciwnym) do u,
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L4: ¥ u,v € V uldv = v0u - dodawanie wektorow O jest przemienne.

(struktura (V,03,0) jest addytywnag grupg abelowg)
oraz z dziataniem zewnetrznym (p. [6]) X xV 3 (z,u) — zeu € V mnozenia
wektora u przez skalar x o wltasnosciach:

L5:31eX VueV leu=u,
L6:Vz,ye X YuecV ze(you)=(z@y)eu,

L7V e XVuv eV ze(udv) = (zeu)d(xev) — dziatanie mnozenia
wektora przez skalar e jest rozdzielne wzgledem dodawania wektorow U,

L8:Vxyec XVueV (rdy)eu= (reu)d(yeu) — dziatanie mnozenia
przez skalar e jest rozdzielne wzgledem dodawania skalaréw &.

W dalszych rozwazaniach przez cialo skalarow, nad ktérym okreslona jest
przestrzenn wektorowa, bedziemy rozumie¢ dowolne cialo (w tym ciata skorni-
czone). Domyslnie jednak jako ciato skalaréw bedziemy w dalszych rozwaza-
niach przyjmowac zbior liczb rzeczywistych R lub zespolonych C. Rozpatrzmy
nastepujace przyktady.

Przyktad 3.1.1.

19 Dowolne ciato X jest przestrzeniq liniowg nad samym sobg. Rzeczywiscie
modutem dodawania wektorow jest modut dodawania w ciele X, podobnie
wtasnosé L5) spetnia modul mnozenia w ciele X.

20 Zbior macierzy ustalonego wymiaru o elementach zespolonych z dziata-
niami dodawania macierzy i mnozenia macierzy przez skalar zespolony,
a wiec struktura (C™*™ 4 .) jest przestrzeniq wektorowq nad C. Modu-
tem dodawania macierzy jest macierz Qmxn, a liczba rzeczywista 1 jest
jedyna spetnigeq warunek L5).

30 Zbior wszystkich wielomiandw o wspétczynnikach rzeczywistych do stopnia
n > 1 oznaczymy Ry [x]. Zbior wszystkich wielomiandw stopnia co naj-
wyzej n z dziataniami dodawania wielomiandw © mnozenia wielomianow
przez liczbe rzeczywistq jest przestrzenig liniowg nad R, w ktorej modu-
tem dodawania jest wielomian zerowy, a wielomian stopnia 0 rowny 1,
jako jedyny, spetnia aksjomat L5).

49 Nad dowolnym ciatem X mozna rozpatrywaé przestrzen liniowq jednoele-
mentowqg V = {0}, ktorg nazywamy przestrzeniq zerowq, gdy mnozenie
przez skalar x jest okreslone nastepujgco Vr € X x -0 = 0. Modutem
dodawania jest wektor zerowy, a elementem spetniajgcym wymog L5) jest
dowolny element ciata X.
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50 Niech V" = X" bedzie zbiorem macierzy (kolumn) wymiaru n x 1 w po-
stact w = [uy, ug, ... ,un]T o elementach z X. W tym zbiorze okreslamy
standardowe dziatania dodawania macierzy © mnozenia macierzy przez
liczbe. Strukture (V",X,+,-) nazywamy przestrzeniq liniowq alge-
braicznql.

6° Niech V oznacza zbidr wszystkich wektom’ plaszczyzny ,zaczepionych”
w jednym ustalonym ,punkcie” ptaszczyzny. Zbior liczb rzeczywistych R
niech bedzie ciatem skalardw. W zbiorze V definiujemy dziatanie doda-
wania wektorow zgodnie z requtq réwnolegtoboku oraz dziatanie mnozenia
wektora przez liczbe rzeczywistq rozumiane jak nastepuje:

— modut skalara jest wspotczynnikiem proporcjonalnosci zmiany dlugo-
Sct wektora,

— mnozenie przez skalar rozny od 0 zachowuje kierunek wektora, a jego
zwrot ulega zmianie przy mnozeniu wektora przez liczby ujemne,

— dowolny wektor pomnozony przez 0 jest wektorem zerowym, ktory jest
réownoleglty do kazdego wektora ptaszczyzny.

Ponizej udowodnimy podstawowe wtasnosci przestrzeni wektorowych.

Twierdzenie 3.1.1. Jezeli (V,X,, ) jest przestrzeniq wektorowq, to dla
dowolnych x € X i u € V mamy:
a)eou=0,
b) re0 =0,
c) (—1)eu=—u,
d)zeu=0=z=cV u=0.
Dowdd. Dla dowolnych e # z € X1 0 # u € V mamy:
Ad a) 00(e o u) 2 cen= (ede)ou ) (eou)T(cou) p-skreglen
L2) L7)

eeu =0,

p. skreslen
) e

Ad b) 00(z ¢ 0) xoOng)mo(ODO) (re0)(xe0 xe0=0,

"W przypadku gdy rozwazamy przestrzen wektorows macierzy nad dowolnym ciatem X,
bedziemy tez uzywaé oznaczenia X"*1.

2Mamy tu na mysli obiekty geometryczne posiadajace takie atrybuty jak diugosé, kieru-
nek i zwrot.
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Ade)0Z2cou=(1a (1) ou "2 (1) eu) 2L (1) eu = —u,
Ad d) W pierwszym kroku przyjmijmy, ze 2z e u = 0 i z # e, wowczas

u=(rlez)eu e 7 e (z o) :ac*loOb:)O, zatem u = 0.

W nastepnym kroku przyjmijmy, ze x e u = 0 i u # 0 oraz = # e.
W konsekwencji istnieje w ciele X element odwrotny 2~ # e wzgledem
mnozenia do x, a stad otrzymujemy

L6)

07£u:(x_1®93)ou = x_lo(xou):x_loob:)

0,

co stanowi sprzecznoéé z zatozeniem. Wobec tego x = e.

Korzystajac z powyzszego twierdzenia, udowodnimy nastepujacy wniosek.

Whiosek 3.1.1. Jezeli (V, X, e,0,1) jest niezerowq przestrzeniq wektorowq
nad ciatem skalarow (X, ®,®,e, f), to f = 1.

Dowdd. Niech V bedzie przestrzenia wektorowa nad cialem X, w ktorej istnieje
rozny od wektora zerowego wektor 0 # u € V, oraz niech f # 1. Na mocy
warunkow L5) i L6) oraz aksjomatow ciata (p. def. 2T.8]) otrzymujemy lewa
strone aksjomatu L6) dlaz =11y = f w postaci L = 1 e (f e u) %) feu,

podobnie prawa strona wtasnosci L6) ma posta¢ P = (1® f)eu=1eu )

u, w konsekwencji otrzymujemy (%) f @ u = wu. Z drugiej strony struktura
(V,0,0) jest grupa przemienna, zatem dla u € V istnieje (—u) € V takie, ze na

podstawie twierdzenia B Tl podpunkty c) i d) otrzymujemy 0 ) ud(—u) %)

(fouw)O((—1)euw) 2 (f& (—1))0u) £ f&(~1) = 0V u = 0. Drugi skladnik
alternatywy jest sprzeczny z zalozeniem, zatem f @ (—1) =0 = f =1, co
koniczy dowdd twierdzenia. O

Jak zapewne zauwazyl skrupulatny Czytelnik, w dotychczasowych rozumowa-
niach wyraznie odroznialiémy moduty dzialan ciala X od wektora zerowego 0
czy tez elementu ciata 1 € X. W dalszych rozwazaniach przyjmiemy nastepu-
jaca umowe zawarta w ponizszej uwadze.

Uwaga 3.1.1. O ile to nie bedzie wyraznie podkreslone, w dalszych rozwaza-
niach mowigce o przestrzeni wektorowej, mamy na mysli przestrzenie wektorowe
niezerowe.
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Ze wzgledu miedzy innymi na powyzsza uwage oraz domyslne przyjmowa-
nie umowy, ze X = R, zrezygnujemy z rozrozniania moduléw e i f ciata X
od modutu dodawania wektorow (wektora zerowego), piszac po prostu 0 i 1.
Czytelnik jedynie z kontekstu bedzie mogt wnioskowaé, jaki element w roz-
wazaniach mamy na myéliﬁ. Podobnie postapimy z uproszczeniem oznaczen
dziatan w przestrzeni wektorowej V i ciele X, mianowicie méwiac o dodawaniu
bedziemy pisaé znak +, a w przypadku mnozenia znak - lub brak jakiegokol-
wiek symbolu miedzy argumentami dziatania. Dodatkowo w odniesieniu do
modulu mnozenia 1 w ciele X w kontekscie mnozenia wektora przez ten skalar
bedziemy uzywacé sformutowania ,, jedynka mnozenia przez skalar” Ponizej
wprowadzimy kolejne pojecia opisujace wlasnosci przestrzeni wektorowych.

Definicja 3.1.2. (Podprzestrzen wektorowa)
Przestrzen liniowg Vi1 nazywamy podprzestrzenig liniowq przestrzeni V,

gdy:
10 Vi C V,
20 obie przestrzenie sq okreslone nad tym samym ciatem,

30 dziatania na wektorach w przestrzeni Vi sq identyczne z dziataniami na
tych samych wektorach w przestrzeni V.

Ponizsze twierdzenie stanowi bardzo uzyteczne kryterium badania, czy dany
podzbiér jest podprzestrzenia wektorows.

Twierdzenie 3.1.2. Niepusty podzbior Vi C V jest podprzestrzenig liniowq
przestrzeni wektorowej (V, X, +,-,0,1) wtedy i tylko wtedy, gdy spetnione sq
warunki:

Vu,veVi Ve eX u4+veVy A x-u€eVy.

Innymi stowy wystarczy pokazaé, ze podzbior Vi jest zamkniety ze wzgledu na
dziatania dodawania i mnozenia przez skalar w przestrzeni V.

Dowdd. W przypadku, gdy Vi jest przestrzenia zerowa lub gdy V; = V,
twierdzenie jest oczywiste. Przyjmijmy zatem, ze Vi C V i nie jest to za-
den z uprzednio wymienionych przypadkow.

,=" Niech V; bedzie podprzestrzenia wektorowsa, przestrzeni V, wéwczas na
mocy definicji podprzestrzeni wektorowej (p. def. B.1.2) podprzestrzen
V1 jest zamknieta ze wzgledu na dziatania dodawania i mnozenia wek-
toréow przez skalar, co jest rownowazne prawej stronie rownowaznosci.

3W wielu zrodlach autorzy stosuja rozroznienie wektora od skalara za pomoca zmiany
czcionki (pogrubienie) wektora lub dopisywanie strzatki nad oznaczeniem wektora.
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,<=" Zaktadamy, ze Vu,v € ViV € X u+v € V) Azxz-u€ V. Naszym za-
daniem jest udowodnié¢, ze (V1,+,-) jest przestrzenia wektorowa, a wiec
ze dziatania dodawania i mnozenia wektoréw przez skalar spetniaja wa-
runki od L1) do L8). Na poczatek podkreslmy, ze kazdy wektor z Vi
jest jednoczesnie wektorem z p. w. V nad cialem X. W pierwszym kroku
zajmijmy sie wlasnoscia dodawania wektoréw. Wobec zamknietosci do-
dawania w Vi mamy V u,v € V1 CV u+v =v+u € Vq, awiec L4). Na
podstawie tej samej wlasnosci otrzymujemy aksjomat L1), mianowicie
VuvweVy (u+v)+w=u+ (v+w)e V. W celu udowodnie-
nia wlasnosci L2) i L3) wystarczy pokazaé¢, ze 0 € V; oraz ¥V u € V;
3 (—u) € Vi. Obie wlasnosci wynikaja z tw. Bl podpunkty a) i ¢)
oraz z zalozenia o zamknietosci mnozenia wektora przez skalar, rzeczy-
wiscie Vu € Vi 0-u=0¢€ Vy, (-1)-u= —u € V;. Warunek L5)
jest rowniez bezposrednia konsekwencja zatozenia o domknietosci mno-
zenia wektora przez skalar. Dowody pozostalych wlasnosci sa prostymi
konsekwencjami dotychczasowych rozwazan.

O
Jako ilustracje wprowadzonych dotychczas pojeé rozpatrzmy nastepujace przy-
ktady:
Przyktad 3.1.2.

19 Przestrzen zerowa jest podprzestrzeniq wektorowq kazdej przestrzeni wek-
toroweyj.

0
wq nad ciatem R, gdzie dodawanie wektorow rozumiemy jako dodawanie
macierzy, a mnozenie wektora przez skalar jako mnozenie macierzy przez

liczbe. Podzbior V OV = { [ LY e Rz, T,y € R} nie jest pod-

20 Niech V = {[ a: ‘Z } ER?*2: gy, 2 ¢€ R} bedzie przestrzeniq wektoro-

0 1
przestrzeniq wektorowg V nad R, gdyz suma dowolnych dwdch macierzy
2z Vy do tego zbioru nie nalezy.

30 Symbolem V = R[x] oznaczymy 2biér wszystkich wielomianéw o wspdt-
czynnikach rzeczywistych, ktory z dziataniami dodawania wielomianow
1 mnozenia wielomiandow przez liczbe rzeczywistq jest przestrzeniq wek-
torowg nad R. Podzbior V. O V; = R, [x] wielomiandw do stopnia n
wlgcznie jest podprzestrzenig wektorowg V, gdyz dowolna suma wielo-
miandow z Vi oraz tloczyn wielomianu z tego zbioru przez dowolng liczbe
rzeczywistq pozostaje wielomianem z Vi (p. tw. [T1.2).



