
Rozdział 3

Algebra liniowa

W tym rozdziale zajmiemy się badaniem własności pewnej struktury alge-
braicznej, zwanej przestrzenią liniową (wektorową), stanowiącej uogólnienie
klasycznej geometrii euklidesowej. Wprowadzane określenia pozwolą przenieść
między innymi pewne geometryczne własności pojęcia wektora na obiekty ta-
kie jak macierze, wielomiany, funkcje, itp.

3.1 Przestrzenie liniowe

W pierwszym kroku zdefiniujemy strukturę algebraiczną zbudowaną z niepu-
stego zbioru elementów nazywanych wektorami, w której określamy dwa dzia-
łania: dodawanie wektorów i mnożenie wektora przez skalar w taki sposób,
by spełnione były np. podstawowe własności obu tych działań w klasycznym
rachunku wektorów na płaszczyźnie. Wprowadzamy następujące pojęcie.

Definicja 3.1.1. (Przestrzeń liniowa) Niech struktura (X,⊕,⊗, e, f) będzie
ciałem. Przez przestrzeń liniową (wektorową) V nad ciałem X nazywamy
strukturę algebraiczną (V,X,�, •) złożoną ze zbioru V, którego elementy na-
zywamy wektorami, z działaniem wewnętrznym dodawania V2 ∋ (u, v) → u�v
o własnościach:

L1: ∀ u, v, w ∈ V (u�v)�w = u�(v�w) - działanie � jest łączne,

L2: ∃ 0 ∈ V ∀ u ∈ V 0�u = u�0 = u - istnieje wektor 0 będący modułem
dodawania wektorów �,

L3: ∀ u ∈ V ∃ (−u) ∈ V u�(−u) = (−u)�u = 0 - wektor (−u) nazywamy
wektorem przeciwnym (elementem przeciwnym) do u,
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L4: ∀ u, v ∈ V u�v = v�u - dodawanie wektorów � jest przemienne.

(struktura (V,�, 0) jest addytywną grupą abelową)
oraz z działaniem zewnętrznym (p. [6]) X ×V ∋ (x, u) → x • u ∈ V mnożenia
wektora u przez skalar x o własnościach:

L5: ∃ 1 ∈ X ∀ u ∈ V 1 • u = u,

L6: ∀ x, y ∈ X ∀ u ∈ V x • (y • u) = (x⊗ y) • u,
L7: ∀ x ∈ X ∀ u, v ∈ V x • (u�v) = (x • u)�(x • v) – działanie mnożenia

wektora przez skalar • jest rozdzielne względem dodawania wektorów �,

L8: ∀ x, y ∈ X ∀ u ∈ V (x ⊕ y) • u = (x • u)�(y • u) – działanie mnożenia
przez skalar • jest rozdzielne względem dodawania skalarów ⊕.

W dalszych rozważaniach przez ciało skalarów, nad którym określona jest
przestrzeń wektorowa, będziemy rozumieć dowolne ciało (w tym ciała skoń-
czone). Domyślnie jednak jako ciało skalarów będziemy w dalszych rozważa-
niach przyjmować zbiór liczb rzeczywistych R lub zespolonych C. Rozpatrzmy
następujące przykłady.

Przykład 3.1.1.

10 Dowolne ciało X jest przestrzenią liniową nad samym sobą. Rzeczywiście
modułem dodawania wektorów jest moduł dodawania w ciele X, podobnie
własność L5) spełnia moduł mnożenia w ciele X.

20 Zbiór macierzy ustalonego wymiaru o elementach zespolonych z działa-
niami dodawania macierzy i mnożenia macierzy przez skalar zespolony,
a więc struktura (Cm×n,+, ·) jest przestrzenią wektorową nad C. Modu-
łem dodawania macierzy jest macierz Om×n, a liczba rzeczywista 1 jest
jedyną spełniącą warunek L5).

30 Zbiór wszystkich wielomianów o współczynnikach rzeczywistych do stopnia
n ≥ 1 oznaczymy Rn[x]. Zbiór wszystkich wielomianów stopnia co naj-
wyżej n z działaniami dodawania wielomianów i mnożenia wielomianów
przez liczbę rzeczywistą jest przestrzenią liniową nad R, w której modu-
łem dodawania jest wielomian zerowy, a wielomian stopnia 0 równy 1,
jako jedyny, spełnia aksjomat L5).

40 Nad dowolnym ciałem X można rozpatrywać przestrzeń liniową jednoele-
mentową V = {0}, którą nazywamy przestrzenią zerową, gdy mnożenie
przez skalar x jest określone następująco ∀x ∈ X x · 0 = 0. Modułem
dodawania jest wektor zerowy, a elementem spełniającym wymóg L5) jest
dowolny element ciała X.



3.1. PRZESTRZENIE LINIOWE 141

50 Niech V n = Xn będzie zbiorem macierzy (kolumn) wymiaru n × 1 w po-
staci u = [u1, u2, . . . , un]

T o elementach z X. W tym zbiorze określamy
standardowe działania dodawania macierzy i mnożenia macierzy przez
liczbę. Strukturę (V n,X,+, ·) nazywamy przestrzenią liniową alge-
braiczną1.

60 Niech V oznacza zbiór wszystkich wektorów2 płaszczyzny „zaczepionych”
w jednym ustalonym „punkcie” płaszczyzny. Zbiór liczb rzeczywistych R

niech będzie ciałem skalarów. W zbiorze V definiujemy działanie doda-
wania wektorów zgodnie z regułą równoległoboku oraz działanie mnożenia
wektora przez liczbę rzeczywistą rozumiane jak następuje:

– moduł skalara jest współczynnikiem proporcjonalności zmiany długo-
ści wektora,

– mnożenie przez skalar różny od 0 zachowuje kierunek wektora, a jego
zwrot ulega zmianie przy mnożeniu wektora przez liczby ujemne,

– dowolny wektor pomnożony przez 0 jest wektorem zerowym, który jest
równoległy do każdego wektora płaszczyzny.

�

Poniżej udowodnimy podstawowe własności przestrzeni wektorowych.

Twierdzenie 3.1.1. Jeżeli (V,X,�, •) jest przestrzenią wektorową, to dla
dowolnych x ∈ X i u ∈ V mamy:

a) e • u = 0,

b) x • 0 = 0,

c) (−1) • u = −u,
d) x • u = 0 =⇒ x = e ∨ u = 0.

Dowód. Dla dowolnych e 6= x ∈ X i 0 6= u ∈ V mamy:

Ad a) 0�(e • u) L2)
= e • u = (e⊕ e) • u L8)

= (e • u)�(e • u) p. skreśleń
=⇒ e • u = 0,

Ad b) 0�(x • 0) L2)
= x • 0 L3)

= x • (0�0)
L7)
= (x • 0)�(x • 0) p. skreśleń

=⇒ x • 0 = 0,

1W przypadku gdy rozważamy przestrzeń wektorową macierzy nad dowolnym ciałem X,
będziemy też używać oznaczenia Xn×1.

2Mamy tu na myśli obiekty geometryczne posiadające takie atrybuty jak długość, kieru-
nek i zwrot.
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Ad c) 0
a)
= e • u = (1⊕ (−1)) • u L5),L8)

= u�((−1) • u) L3)
=⇒ (−1) • u = −u,

Ad d) W pierwszym kroku przyjmijmy, że x • u = 0 i x 6= e, wówczas

u = (x−1 ⊗ x) • u L6)
= x−1 • (x • u) = x−1 • 0

b)
= 0, zatem u = 0.

W następnym kroku przyjmijmy, że x • u = 0 i u 6= 0 oraz x 6= e.
W konsekwencji istnieje w ciele X element odwrotny x−1 6= e względem
mnożenia do x, a stąd otrzymujemy

0 6= u = (x−1 ⊗ x) • u L6)
= x−1 • (x • u) = x−1 • 0 b)

= 0,

co stanowi sprzeczność z założeniem. Wobec tego x = e.

Korzystając z powyższego twierdzenia, udowodnimy następujący wniosek.

Wniosek 3.1.1. Jeżeli (V,X,�, •, 0, 1) jest niezerową przestrzenią wektorową
nad ciałem skalarów (X,⊕,⊗, e, f), to f = 1.

Dowód. Niech V będzie przestrzenią wektorową nad ciałem X, w której istnieje
różny od wektora zerowego wektor 0 6= u ∈ V, oraz niech f 6= 1. Na mocy
warunków L5) i L6) oraz aksjomatów ciała (p. def. 2.1.8) otrzymujemy lewą

stronę aksjomatu L6) dla x = 1 i y = f w postaci L = 1 • (f • u) L5)
= f • u,

podobnie prawa strona własności L6) ma postać P = (1 ⊗ f) • u = 1 • u L5)
=

u, w konsekwencji otrzymujemy (∗) f • u = u. Z drugiej strony struktura
(V,�, 0) jest grupą przemienną, zatem dla u ∈ V istnieje (−u) ∈ V takie, że na

podstawie twierdzenia 3.1.1 podpunkty c) i d) otrzymujemy 0
L3)
= u�(−u) c),(∗)

=

(f • u)�((−1) • u) L8)
= (f ⊕ (−1))�u)

d)⇒ f ⊕ (−1) = 0∨u = 0. Drugi składnik
alternatywy jest sprzeczny z założeniem, zatem f ⊕ (−1) = 0 =⇒ f = 1, co
kończy dowód twierdzenia.

Jak zapewne zauważył skrupulatny Czytelnik, w dotychczasowych rozumowa-
niach wyraźnie odróżnialiśmy moduły działań ciała X od wektora zerowego 0
czy też elementu ciała 1 ∈ X. W dalszych rozważaniach przyjmiemy następu-
jącą umowę zawartą w poniższej uwadze.

Uwaga 3.1.1. O ile to nie będzie wyraźnie podkreślone, w dalszych rozważa-
niach mówiąc o przestrzeni wektorowej, mamy na myśli przestrzenie wektorowe
niezerowe.
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Ze względu między innymi na powyższą uwagę oraz domyślne przyjmowa-
nie umowy, że X = R, zrezygnujemy z rozróżniania modułów e i f ciała X

od modułu dodawania wektorów (wektora zerowego), pisząc po prostu 0 i 1.
Czytelnik jedynie z kontekstu będzie mógł wnioskować, jaki element w roz-
ważaniach mamy na myśli3. Podobnie postąpimy z uproszczeniem oznaczeń
działań w przestrzeni wektorowej V i ciele X, mianowicie mówiąc o dodawaniu
będziemy pisać znak +, a w przypadku mnożenia znak · lub brak jakiegokol-
wiek symbolu między argumentami działania. Dodatkowo w odniesieniu do
modułu mnożenia 1 w ciele X w kontekście mnożenia wektora przez ten skalar
będziemy używać sformułowania „ jedynka mnożenia przez skalar” Poniżej
wprowadzimy kolejne pojęcia opisujące własności przestrzeni wektorowych.

Definicja 3.1.2. (Podprzestrzeń wektorowa)
Przestrzeń liniową V1 nazywamy podprzestrzenią liniową przestrzeni V,
gdy:

10 V1 ⊂ V,

20 obie przestrzenie są określone nad tym samym ciałem,

30 działania na wektorach w przestrzeni V1 są identyczne z działaniami na
tych samych wektorach w przestrzeni V.

Poniższe twierdzenie stanowi bardzo użyteczne kryterium badania, czy dany
podzbiór jest podprzestrzenią wektorową.

Twierdzenie 3.1.2. Niepusty podzbiór V1 ⊂ V jest podprzestrzenią liniową
przestrzeni wektorowej (V,X,+, ·, 0, 1) wtedy i tylko wtedy, gdy spełnione są
warunki:

∀u, v ∈ V1 ∀x ∈ X u+ v ∈ V1 ∧ x · u ∈ V1.

Innymi słowy wystarczy pokazać, że podzbiór V1 jest zamknięty ze względu na
działania dodawania i mnożenia przez skalar w przestrzeni V .

Dowód. W przypadku, gdy V1 jest przestrzenią zerową lub gdy V1 = V,
twierdzenie jest oczywiste. Przyjmijmy zatem, że V1 ⊂ V i nie jest to ża-
den z uprzednio wymienionych przypadków.

„⇒” Niech V1 będzie podprzestrzenią wektorową przestrzeni V, wówczas na
mocy definicji podprzestrzeni wektorowej (p. def. 3.1.2) podprzestrzeń
V1 jest zamknięta ze względu na działania dodawania i mnożenia wek-
torów przez skalar, co jest równoważne prawej stronie równoważności.

3W wielu źródłach autorzy stosują rozróżnienie wektora od skalara za pomocą zmiany
czcionki (pogrubienie) wektora lub dopisywanie strzałki nad oznaczeniem wektora.
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„⇐” Zakładamy, że ∀u, v ∈ V1 ∀ x ∈ X u+v ∈ V1 ∧ x ·u ∈ V1. Naszym za-
daniem jest udowodnić, że (V1,+, ·) jest przestrzenią wektorową, a więc
że działania dodawania i mnożenia wektorów przez skalar spełniają wa-
runki od L1) do L8). Na początek podkreślmy, że każdy wektor z V1

jest jednocześnie wektorem z p. w. V nad ciałem X. W pierwszym kroku
zajmijmy się własnością dodawania wektorów. Wobec zamkniętości do-
dawania w V1 mamy ∀ u, v ∈ V1 ⊂ V u+v = v+u ∈ V1, a więc L4). Na
podstawie tej samej własności otrzymujemy aksjomat L1), mianowicie
∀ u, v, w ∈ V1 (u + v) + w = u + (v + w) ∈ V1. W celu udowodnie-
nia własności L2) i L3) wystarczy pokazać, że 0 ∈ V1 oraz ∀ u ∈ V1

∃ (−u) ∈ V1. Obie własności wynikają z tw. 3.1.1 podpunkty a) i c)
oraz z założenia o zamkniętości mnożenia wektora przez skalar, rzeczy-
wiście ∀ u ∈ V1 0 · u = 0 ∈ V1, (−1) · u = −u ∈ V1. Warunek L5)
jest również bezpośrednią konsekwencją założenia o domkniętości mno-
żenia wektora przez skalar. Dowody pozostałych własności są prostymi
konsekwencjami dotychczasowych rozważań.

Jako ilustracje wprowadzonych dotychczas pojęć rozpatrzmy następujące przy-
kłady:

Przykład 3.1.2.

10 Przestrzeń zerowa jest podprzestrzenią wektorową każdej przestrzeni wek-
torowej.

20 Niech V =

{[
x y
0 z

]

∈ R2×2 : x, y, z ∈ R

}

będzie przestrzenią wektoro-

wą nad ciałem R, gdzie dodawanie wektorów rozumiemy jako dodawanie
macierzy, a mnożenie wektora przez skalar jako mnożenie macierzy przez

liczbę. Podzbiór V ⊃ V1 =

{[
x y
0 1

]

∈ R2×2 : x, y ∈ R

}

nie jest pod-

przestrzenią wektorową V nad R, gdyż suma dowolnych dwóch macierzy
z V1 do tego zbioru nie należy.

30 Symbolem V = R[x] oznaczymy zbiór wszystkich wielomianów o współ-
czynnikach rzeczywistych, który z działaniami dodawania wielomianów
i mnożenia wielomianów przez liczbę rzeczywistą jest przestrzenią wek-
torową nad R. Podzbiór V ⊃ V1 = Rn[x] wielomianów do stopnia n
włącznie jest podprzestrzenią wektorową V, gdyż dowolna suma wielo-
mianów z V1 oraz iloczyn wielomianu z tego zbioru przez dowolną liczbę
rzeczywistą pozostaje wielomianem z V1 (p. tw. 3.1.2).


