
Source Code
Exploration with

Memcached

Praveen Raj
Prashanth Raghu

A beginner's guide to understanding and
exploring open-source code

www.bpbonline.com

ii

Copyright © 2024 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor BPB Online or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, BPB
Online cannot guarantee the accuracy of this information.

First published: 2024

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-873

www.bpbonline.com

 iii

Dedicated to
My parents Sri Rajavardhan and Sharadaraj and

uncle S Muthuraj and Aunt Swati

I would also like to dedicate the work to my grandmother
Late Smt. Lakshmi M

My sisters Dr Poornima, Dr Pratima and Priyanka
My Spiritual Guru Sadhguru Jaggi Vasudeva

My Mentors Ananth Narayan S and Amruta Misra
My Friends

As always we would like to add that all the credits for all the sources would
go to the authors of Memcached, Our sincere gratitude goes out to these
individuals for their contributions to the Memcached community

— Praveen Raj

My parents Sri S Raghu and S Anuradha
who have always supported me during all endeavors and

helped shape each of my works.

I would also like to dedicate the work to my grandparents
Late Sri G Sampath and Late Smt. GS Sriragamma

and
Late Sri SRS Iyengar and Smt. Jayalakshmi

My brother Sri Jayanth Raghu and sister in law Smt. Veena Rao and
my companions in joy Siddhanth and Vedanth

As always we would like to add that all the credits for all the sources would go
to the authors and contributors of Memcached, we have only summarized the
learnings for the good of all and easy readability.

— Prashanth Raghu

iv

About the Authors

l Praveen Raj has been actively involved in the open-source community for the past
seven years, primarily contributing through Intel® Security Libraries. His journey
in the world of open source has been characterized by a dedicated commitment to
the development and enhancement of security-related technologies, and he has
contributed to the container runtime community focussed on security such as
containerd, ocicrypt, ocicrypt-rs and katacontainers. Currently is working for Intel®
Trust Authority. He has completed his master's from the Rashtreeya Vidyalaya College
of Engineering, Bangalore, and his Bachelor’s of Engineering from PES Institute of
Technology Bangalore.

l Prashanth Raghu is an open source enthusiast who believes in the transformational
capability of Open source software in one’s learning journey and enabling him to make
solid decisions during architectural designs. He believes in writing books that can be
considered documentation of large code bases to enable and accelerate one’s learning.
He is currently on a startup to create products for children and provide solutions to
startups. He is a Carnatic flutist by passion and is actively mentored by Guru Vid Sri
S Venkatesh and Karnataka Kalashree Vid Sri HS Venugopal. He has completed his
master's from the National University of Singapore and his Bachelor’s of Engineering
from PES Institute of Technology, Bengaluru.

 v

About the Reviewer

Jayanth Raghu has been working as a principal engineer at Infinera for over 12 years,
specializing in network planning and management tools. He possesses a wealth of
experience in full-stack development. Jayanth has a strong interest in engaging with
customers to address their problems and continuously seeks to explore the latest
technological trends.

In his spare time, Jayanth enjoys playing and watching sports, and his free time is often
occupied by his children.

vi

Acknowledgements

m I would like to thank my technical guru Prashanth Raghu, for encouraging me to co-
author this book, I could never have started to work on this book without him. Special
thanks to my sister Dr Poornima and mother Sharadaraj, whose love is an unending
wellspring of tenderness, and whose sacrifices have paved the path to my ambitions.
This dedication is a token of gratitude for the countless sacrifices they have made,
the lessons they have imparted, and the unwavering support they have provided
throughout my journey. Special thanks to family members Rajavardhan, S Muthuraj,
Swati, Dr Pratima R, Dr Abhilash V, Priyanka R and Jagadeesh H.

 I recognize that my accomplishments and experiences are not solely a result of my
efforts but are also gifts from the divine. The grace of God has been the silent partner
in my endeavors, the reassuring whisper in moments of doubt, and the gentle hand
that has steered me away from adversity.

 With profound respect and boundless love, this book is also dedicated to my guiding
light, my spiritual guru Sadhguru Jaggi Vasudeva, whose presence in my life has been
an eternal blessing. Many thanks to my other spiritual gurus, Paramahansa Yogananda,
Swami Vivekananda and Swami Sivananda.

 I am also thankful for my managers at Intel Uttam Shetty, Mrittika Ganguly, Amruta
Misra, Raghu Yelluri, Sudhir Bangalore, Shubha R, Jaswant Jasrotia and colleagues
Dinkar Dhawale, Arijit Gosh, Arvind Rawat, Raghavender N, Vartika D and my
best friends Krishna Desai, Chandra Kumar, Dattatreya, Sudarshan Prabhu, Sankalp
Shettar, Manjunath and Naveen Kumar.

 I would also like to thank my professors Prof. NS Kumar, Prof. Ramamurthy Sreenath,
Prof. Chidambara Kalamanji, Prof. Nagegowda KS, Prof. D Krupesha, Prof. Rajkumar
Rangaswamy, Prof. Nitin.V.Pujari, Prof. Sridhar Seshadri. Extended thanks to my
school teachers Miss Pallavi, Miss Daneshwari, Ravi and Rajkumar, Yoga teacher Dilip.

 I am incredibly grateful to all the amazing people who took time out of their busy
schedule to review this book in so much detail. Many thanks to BPB staff who gave
us insightful feedback, reviews, encouragement and helpful during the process of
authoring this book.

— Praveen Raj

 vii

m This book would not have been possible without the infinite support of my Family
and the lord almighty Sri Ramar. First and foremost my grandfather Mr. G. Sampath
a leading advocate in Bangalore, India who led the baton in the Central Excise and
Customs department to become one of the authorities on the subject matter in India.
I would like to acknowledge the infinite support of my father Mr. S Raghu also an
advocate in the same subject matter. He was the one who pulled me out of extreme
rough weather in my life and stood as a the shining lighthouse amidst all storm. His
everlasting smile is a great inspiration during all my endeavours. I would like to
extend my greatest regards to my mother Mrs. S Anuradha who has taken all the
pain in life to support me during all my endeavours. It would be incomplete if I did
not mention the role of my brother Jayanth Raghu who stood like a ladder for me
to climb to the top guiding me and supporting me at every step. I still remember
the first day of the undergraduation where he remarked “ python Google

” (Brother, learn python well it is what will
help you get into Google. (Original in Kannada)). My aunt Smt. Radha Sreekanth
and uncle Sri. Sreekanth and Sri. Lakshmi Narasimhan, Smt. Jayashree, Sri. Raghava
Simhan and Smt. Sumana Raghava Simhan. I would also like to thank Gangadhar
Gauribidanur who was more than a family member to us, always willing to help and
ever entertaining us through delightful stories right from our childhood. I would
also like to thank my respected professors D. A. Srinivas, Prof. NS Kumar, Prof.
Ramamurthy Sreenath, Prof. Chidambara Kalamanji, Prof. Nagegowda KS, Prof. D
Krupesha, Prof. Rajkumar Rangaswamy , Dr Juergen Ehrensberger, Dr Chan Mun
Choon and Prof. Nitin.V.Pujari, Prof. Dr K Shridhar. I would like to also mention my
friends Shiva Shankar, Paresh Nadig, Harsha SK, Nithin, Ashwin, Vijay Kumar, Ajay
Kumar, Umesh Rao, Sumanth Rao, Susheela, Pallavi Pai, Shruthi K, Chandrakanth
K, Shiva Kumar, Shashikiran RP, Pranav HU, Siddharth Goel, Veeresh Hiremath,
Raveendra Pai, Praveen Raj, Sanjeev Reddy, Vishwanath, Yashaswi Chaudhary, Suhas
Bharadwaj, Vinod Kumar M, Praveen Poojari, Prashanth Rajendran, Rajeev Ravi
and Padmanabha Venkatagiri Sheshadri, Xiang Fau, Manjunatha Doddavenkatappa,
Girisha D'Silva, Nimanatha Baranasuriya who have been my prime pillars of support
always. I would like to also thank Elvis D’Souza and Umair Z Ahmed who have helped
me during my under graduation. I would like to also thank everyone who helped
me on the irc channel with all my doubts. I would like to also thank my mentors
Kiran Hathwar, Hariom Srivastava, Kshitij Saxena, Rahul Bendre, Mr. Krishnakumar,
Mr. NS Nagaraja, Mr. Madhu Iyengar, Mr. Srinivas Thonse, Mr. Kurt Griffiths, Mr.
Alejandro Cabrera, Mr. Fabio Percoco, Supreeth Kumar, Arun Das, Siva Ekambaram,
Rajith Noojibial, Sunil Patro, Souvik Dutta, Neelanshu Goel, my teammates Rajath

viii

Singh, Sachin Mannur and Anirjit Bannerjee as well as my colleagues from InMobi
and Zeta albeit for a short duration. I would also like to thank my non technical
mentors, Respected Vid Sri S Venkatesh and Vid Sri HS Venugopal who have been a
guiding light in my life. I would like to also acknowledge the support of all my cousins
Ramyashree, Ranjitha, Abhijna, Prathiha and Bharath as well as Tejaswini Pillai and
Sunil Mudambi.

 As we say in Bharat:

 “ Sarve Bhavanthu Sukhinaha , Sarve Santhu Niramayaha, Sarve bhadrani Phashyantu,
Ma Kaschit dukha baarbhaveth. Om Shanthi, Shanthi, Shanthihi”.

 “Om, May All become Happy, May All be Healthy (Free from Illness) May All See
what is Auspicious, May no one Suffer in any way.”

 I would like to extend my humblest regards to all the great saints and philosophers of
my country from whom great thoughts have emerged and spread to all over the world
today. If anyone asks me why I am proud of my country I would always say “ Bharat
is the first country which spoke about looking inwards for happiness”.

 I am also grateful to BPB Publications for their guidance and expertise in bringing this
book to fruition. It was a long journey of revising this book, with valuable participation
and collaboration of reviewers, technical experts, and editors. Special thanks to the
team who have coordinated with us flawlessly.

 Last but not the least to my wonderful friend and co author Sri Praveen Raj who is an
epitome of dedication and silent commitment to his craft. This book is brought to life
greatly by his commitment as well as my brother Sri Jayanth Raghu who was also the
technical reviewer for the same.

— Prashanth Raghu

 ix

Preface

Open-Source development has been the single largest contributor to the development
community and the contributions are used across the IT landscape including corporations,
universities, schools etc. Despite being highly popular, contributing to open source and
navigating open source systems has always been a challenge and some reasons could be
due to most open source developers holding other day jobs which might also be their
regular work.

Memcached (https://memcached.org/) is one of the largest commercially and non-
commercially used caching systems in the IT world, with a relatively smaller codebase that
enables developers to understand the basic skelitals of source code structures, while really
enabling developers to hone their skills towards development of high quality production
grade, enterprise ready open source software. Most server based technologies

Open source development skills enable developers to understand intricacies of softwares
enabling powerful decision making while choosing technologies over trends and making
mature decisions on a day to day development basis. This books is for all programming
enthusiasts and is designed to be a Source code 101 level book but can help developers
elevate to architect level decision making as well as architects to make solid software
decisions while building sustainable and scalable systems.

Chapter 1: Source Code Explorations in Open-Source Systems - Navigating large open
source code bases have both been tricky and difficult to understand the intent of the created
code. Despite this, it happens to be one of the most sought after skills to develop and
architect high performance code. In today’s age of scalable systems some of the toughest
problems contain the answers in understanding the codebases of the used systems. This
chapter explores some common ways to begin and navigate the journey and understanding
differences and similarities between different open source systems.

Chapter 2: Getting Started with Memcached Design - Most server based systems to
accommodate for high network IO capability on commodity hardware and resource
utilization adopt the usage of the event loop based systems to manage both the IO
connections as well as network management. Once the data is input into the system,
the protocol manager reads the data to identify the type of data coming from the client.
The data input is then placed on the LRU cache with the management of the expiry of
individual data units. The network manager manages the connection lifecycle from clients
as well as managing the timeouts and their termination if needed.

x

Chapter 3: Design of Event Loop - Asynchronous Socket driven systems contain an
event loop that drives connections to the server using a shared thread that handles both
connection and data management to the application. The event loop can be created using
operating system primitives which help application developers minimize the time to both
create and manage the event loop and the operations associated with it.

Chapter 4: Server Initialization - Initialization of the server includes parameters for the
users to configure the server for both performance and scalability as well as few parameters
specific to the underlying system.

Chapter 5: LRU Cache - The LRU Cache is the design of the internal cache memory that
holds users data as Key Value pairs. Memory being limited and memcached being a caching
system, the unused key value pairs have to be evicted from the system. The LRU Cache
contains mechanisms to remove these unused KV pairs to help keep the cache leaner.

Chapter 6: Slab Management - Allocation of memory to user’s key value pairs on a
demand basis, requires multiple calls to operating system primitives. Memcache uses the
slab allocation system to preallocate memory as well as divide the data into pages according
to the requested size. Preallocation of memory reduces the number of memory allocations
to be made in the runtime. The memory allocator is also protected by semaphore locks
to prevent memory corruption during allocation, reallocation and memory management.

Chapter 7: Server Authentication - Authentication to Memcached is not mandatory but a
suggested step for connecting to Memcached. The server provides a standard SASL auth
allowing users and connections with a username / password to be able to login to the
system. Additionally memcached also supports optional SSL auth to allow higher level of
security to connections trying to manipulate key data.

Chapter 8: Protocol Definitions - Memcached uses a custom protocol over TCP / UDP to
provide operations to its clients. The chapter deals with the design of the protocol, headers,
request and response bodies, as well as the status codes for success and unsuccessful
responses.

Chapter 9: Background Processes - Memcached uses background operations to perform a
few non synchronous critical tasks such as slab rebalancing, dumping memcached data to
files. This chapter deals with the flow of background processes and their generic structures.

Chapter 10: Proxy Server Design and External Storage - Memcached provides backdoor
entry for administrators to dynamically configure the server as well as examine server
statistics and vitalities as well as live user data.

 xi

Chapter 11: Using Memcached at Scale - Memcached has been chosen as the tool of choice
owing to its commercial success as well as the simplicity of code along with the usage of
most common architecture patterns for client server based open source systems. Use cases
of caching softwares could range for a wide range of cases right from storage of audio,
video and other multimedia formats to textual data ranging from database results, user
session data to be distributed across different machines. This chapter covers many usages
at large scale in organizations such as facebook, twitter, pinterest etc. One of the major
drawbacks of memcached is the lack of support for clustering and hence this chapter talks
on the workarounds created in these systems to support clustering at such large workloads.

Chapter 12: Continuation of the Exploration Journey - Memcached has been chosen as
the tool of choice owing to its commercial success as well as the simplicity of code along
with the usage of most common architecture patterns for client server based open source
systems. The chapter covers identification of common patterns between different tools as
well as understanding the same to help continue the journey.

xii

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

Coloured Images
Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/698cc8

We have code bundles from our rich catalogue of books and videos available at https://
github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

 xiii

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xiv

Table of Contents

 1. Source Code Explorations in Open-Source Systems ...1
Introduction ...1
Structure ...2
Objectives ...2
Need to understand open-source code ..2
Open-source systems commonly used around us ...4
Commonalities from different systems ..5
Common structure of open-source code systems ..5

Event loops in network-based systems ..5
The usage of event loops is Redis ..6
Structure of the event loop structure within NodeJS6
Structure of the event loop structure within Memcached7

Memory management ...8
Structure of a memory block within Redis ...8
Memory management in Python ...10
Memory management in Memcached ..11
Data structures ...11
Dictionary in Python ...11
Dictionary in Redis ..13
Dictionary in Memcached ..13

Benefits of participating in open-source systems ...14
Licensing of open-source systems ..15
Conclusion ...16

 2. Getting Started with Memcached Design ...17
Introduction ...17
Structure ...17
Objectives ...18
Event loops and implementation in memcached ...18

Components of event loop systems ..19

 xv

Event loop libraries ...20
Connection management ...20
Event processing ...21

Protocol readers ...22
Cache design and LRU implementation ..22
Background processes ..24
Admin management controls ..25

Key features of the Proxy Server ...25
Conclusion ...26

 3. Design of Event Loop ..27
Introduction ...27
Structure ...28
Objectives ...28
Event loops in memcached ..28
Event loops using libevent ..30

Event loop operations ..30
Event loop creation ...31
Binding event loop to a port ...32
Event loop configurations...32
Event loop managing client connections ..33
Managing client data ...34
Managing connection errors ..35
Events with priorities ...35

Event loop implementation in memcached ..36
Architecture of memcached event loops ..36
Structure of an event loop ...36

Creation of the master loop ...37
Creation of the worker event loops ...38
Setting up worker threads and registering the workers40
Connection creation by the master loop and dispatching to the worker loop ...41
Dispatching client connections to worker threads43
Client event processing ..45

xvi

Event loop of a worker thread ...46
Conclusion ...48

 4. Server Initialization ...49
Introduction ...49
Structure ...49
Objectives ...50
Signal handling ...50
Server configuration parameters ..51
Server management statistics ..52
Key server configurations and input sanitization ..54

Initialization of SSL support ...54
TCP port configuration and validation of parameters55
Daemon mode ..56
Queue limit ...58

Initialization of auxiliary modules ...59
Initialization of authentication ...59
Initialization of statistics ..60
Initialization of logger ...61
Initialization of connection management ..62

Brief introduction to core functions..63
Initialization of the hash function ...64
Initialization of storage memory slabs ..64
Event loop initialization ..65
Background threads ...66

Conclusion ...67

 5. LRU Cache ..69
Introduction ...69
Structure ...70
Objectives ...70
Architecture of the LRU cache ..70

Design of the LRU Queues in memcached ...71

 xvii

Design of the LRU maintenance thread ..72
Structure of the LRU cache ..72
Operations on the LRU cache ..74

Adding an item to the Cache ...74
Updating an item in the Cache ...77
Linking to hash table ...78
LRU check when adding an item to the Cache ..79
Eviction during LRU maintenance ..81
LRU cache item update ...87

Conclusion ...88

 6. Slab Management ...91
Introduction ...91
Structure ...92
Objectives ...92
Structure of memory slabs ...92
Initialization of slabs ...93
Memory slabs preallocation ..95
Handling out-of-memory cases in a slab class ...97
Removing memory from a slab class ...99
Slab rebalancing ..101
Conclusion ...103

 7. Server Authentication ..105
Introduction ...105
Structure ...105
Objectives ...106
SASL initialization using the password database ..106
Authenticating the client session ..110
SSL initialization..113
SSL handshake, and certificate exchange and verification116
SSL connection initialization ...118
Reading and writing encrypted data ...119

xviii

Conclusion ...122

 8. Protocol Definitions ...125
Introduction ...125
Structure ...125
Objectives ...126
Memcached standards for the meta protocol ...126

Memcached meta protocol ...126
Processing of commands..129
Conclusion ...136

 9. Background Processes ..137
Introduction ...137
Structure ...137
Objectives ...138
Initialization of background processes ..138
Implementation of the LRU crawler thread ..140

Initialization of the LRU crawler thread ...140
Modules of the LRU crawler thread ..142

Implementation of the hash table maintainance thread148
Implementation of the connection management thread153
Conclusion ...156

 10. Proxy Server Design and External Storage ..157
Introduction ...157
Structure ...158
Objectives ...158
Initialization of the proxy server ..158
Initialization of the memcached proxy commands ..161
Creating a server pool ..163
Adding a backend to a pool ..166
Adding a command hook ..167
Execution of commands and command hooks ...169
Initialization of external storage ...171

 xix

Adding a key to external store ..171
Getting a key from external store ...173
Conclusion ...174

 11. Using Memcached at Scale ...175
Introduction ...175
Structure ...175
Objectives ...176
Usage of memcached in X (formerly Twitter) ...176

Customizations of the platform ...177
Lock-less stats collection ...177

Use of memcached in Airbnb ..178
Use of memcached in Netflix ..178
Use of memcached in Pinterest ...179
Usage of memcached in Spotify ..181
Conclusion ...181

 12. Continuation of the Exploration Journey ..183
Introduction ...183
Structure ...184
Objectives ...184
Collaboration and community engagement ...184
Learning best practices ...184
Identifying project commonalities and furthering the journey185
Contribution and giving back ...186
Conclusion ...186

 Index .. 187-191

Introduction
Welcome to the navigation world, not the navigation done by sailors or the navigation
control systems used in satellites, rockets, or other locomotive systems, but in the ocean of
open-source code. While we are all sailors looking at the vast sea from the horizon, with
numerous sailors operating both on the horizon and the high seas, the maps available to
sail to the high seas are only a few. The ones operating there have not been able to create
many maps for new sailors to start sailing on their routes.

This brings us to the problem at our hands: navigating open-source code and systems,
which are large systems with millions of lines of code, in many cases undocumented,
making the learning curve very steep for new enthusiasts to be able to learn and contribute
to these systems.

The incentives to learn open-source systems being very high prompts many students
and engineers to jump into the arena, often being derailed due to a lack of systematic
documentation. This chapter covers the reasons to master, navigate and understand open
source code systems and its benefits.

Memcached captures the common essence of most open-source systems and is concise for
enthusiasts willing to begin exploring open-source systems. This chapter does emphasize
common factors across systems. This book aims to help enthusiasts begin their journey

Chapter 1
Source Code

Explorations in Open-
Source Systems

2 Source Code Exploration with Memcached

with a small code base and still be able to understand the core aspects of open-source
systems.

Structure
In this chapter, we will discuss the following topics:

•	 Need to understand open-source code
 o Open-source systems commonly used around us
•	 Commonalities of different systems
•	 Common structure of open-source code systems
 o Event loops in network-based systems
 o Memory organization
 o Data structures
•	 Benefits of understanding, contributing to and extending open-source systems
•	 Open-source licensing

Objectives
After studying this chapter, you will develop the ability to recognize the importance
of understanding open-source code. This involves appreciating why delving into the
intricacies of such codebases is crucial. Furthermore, you will gain insights into the
structural similarities that underlie different open-source codebases. This will be achieved
through the use of illustrative examples that highlight common patterns across various
projects. A clear understanding of the significance of documentation within open-source
code systems will also be obtained. Additionally, you will acquire the skills necessary to
effectively expand upon existing open-source code systems, facilitating their ongoing
evolution. Lastly, you will attain a comprehensive comprehension of prevalent open-
source system licenses and their far-reaching implications. This knowledge will encompass
a deeper understanding of how licenses influence aspects like usage, distribution,
contribution, and more.

Need to understand open-source code
Sea swimmers love to enjoy the sights under the sea from the shallower side, commonly
referred to as snorkeling. Although this is enjoyable and appreciable, one needs to get
to the bottom of the ocean to see the gems. Advanced use cases, performance studies,
architecture decisions in high-scalability systems, bug evaluations, and so on require an in-
depth understanding of the system being used. Understanding open-source code is one of
the most sought-after skills in the industry today. Despite this, the number of professionals

Source Code Explorations in Open-Source Systems 3

in this area has been limited and continues to be so due to a high entry barrier. It prevents
easy onboarding for new contributors to start understanding and contributing. Despite
that, the blame cannot be handed to the developers of these systems, as they spend a
considerable amount of their free time helping developers around the world at almost no
charge. While some open-source systems have enterprise versions or enterprise modules,
the efforts are always praiseworthy.

Let us consider the case of an architect; designing a massively scalable system such as
Facebook/Instagram needs the selection of a caching system. They are presented with
options and are asked for their reasoning for selection. Common solutions would be to
study the benchmarks and performance studies provided by individual organizations
or other study groups. Although this could help, there could be biases or many points
missing. The other approach could be the architect taking up the source codebase of the
systems and analyzing the performance in key areas like connection limits, throughput,
and so on. This not only helps them understand the system but also gives an in-depth
picture of the usability of the system, which can later be used to configure the system as
per the requirements of the use case. The team can also fork the main repository and create
a version that suits their needs.

An example could be to write an independent memory allocation system, overriding the
default considering the known size or format of the data being stored/optimizing for
data types like images or videos. These in-depth changes to an open source system or
optimizating it require understanding the systems in totality. These are not imaginary
use cases, as we will see in Chapter 11, Using Memcached at Scale, where such use cases are
mentioned in depth. Facebook had changed the routing protocol within Memcached to
create a fork, to suit its needs for higher bandwidth availability.

The question could naturally arise as to why large enterprises, such as Facebook, choose to
change the code over writing their custom versions of the same. The driving force behind
this is the common knowledge base of open-source code developers, which is leveraged
over a small set of developers working on software. Open-source software derives a major
benefit from the best developers in the world, contributing to creating the most adaptable,
scalable, and usable software using state-of-the-art coding and evaluation processes. This
results in great systems, especially from a security standpoint, owing to the number of
eyes on the code base to catch such errors before they enter into usage. Hence, most large
enterprises prefer to use this common knowledge base and provide sponsorship to thank
and help the community grow while writing the custom modules needing optimizations
within the organization.

The benefits of understanding the source code are not only for enterprise architects.
The other beneficiaries are the student communities who have time and curiosity and
can be impacted by learning the systems ground up rather than using manuals or books
to understand the functionalities. The students can slowly graduate from developers to
architects providing state-of-the-art suggestions and developing enterprise-grade systems
with a solid-working knowledge of the systems being used.

4 Source Code Exploration with Memcached

Understanding open-source code is necessary for every developer to develop state-of-the-
art code for high scalability, performance, and security.

Open-source systems commonly used around
us
The world around us is impacted to a greater extent by open-source systems than we
realize. From the phones we use and the vehicles we operate to the electric grids around us
and the watches we sport, open-source code has impacted people’s lives in various ways,
much to our unawareness.

Some of the open-source systems used widely are listed here:
•	 Android, one of the most widely used operating systems for smartphones, is

known to be an open-source project. Although it could be argued in the strictest
sense that the majority of the development happens with Google, the source
code is made available to the world to understand the implications and provide
quantitative feedback to improve the system.

•	 FreeRTOS, an open-source embeddable operating system with a remarkably
low memory footprint, is used in a wide range of systems, from smartwatches
and trains to controlling systems and IoT devices, including common household
systems like doorbells and emergency fire alarms. These systems are even used
aboard airplanes and stand as a testament to the reliability and security of the
software developed by the community.

•	 Linux stands as a testament to an individual’s vision that could lead to a total
change in the thinking of an entire industry and shifting development paradigms
to expand to the cloud revolution. The impact of Linux is ubiquitous on almost
all systems and software that we use, from operating systems like Android to
MacIntosh.

•	 MySQL and PostgreSQL; it would not be wrong to say that if start-ups can spawn
up in every corner of the world, the role of open-source software is large. Ranging
from programming languages and their libraries to data storage systems like
MySQL, everything is offered free for development and enterprise usage. MySQL
has revolutionized data management by offering RDBMS solutions for free, which
is suitable for operation at a high scale. The impact is seen worldwide in every
application sector, from software services to banking and governance.

•	 Programming languages like Python, Lua, C, C++ (compilers), Lua, Rust, database
systems, caching systems, web frameworks, and libraries, the availability of open-
source code systems has greatly impacted visibility and democratized developer
access to enterprise-grade software, resulting in rapid innovation at minimal

Source Code Explorations in Open-Source Systems 5

cost. The impact of open-source software is greater than we can imagine, and the
software mentioned here are just the tip of the iceberg;.

•	 Kubernetes (commonly referred to as K8s) is an open-source container
orchestration platform that automates containerized applications’ deployment,
scaling, and management. Google initially developed it, and it is now maintained
by the Cloud Native Computing Foundation (CNCF).

 Kubernetes, being an open-source project, offers collaborative development,
transparency, flexibility, vendor-agnosticism, cost-effectiveness, a rich ecosystem,
continuous improvement, and strong community support.

Commonalities from different systems
A programming language contains a parser, symbol table generator, compiler, assembler,
and interpreter, to mention a few common phases, along with memory management,
thread management, configurations, data structures, and many more. While exploring
multiple languages, we can note that the code stages remain almost identical. The parsing
is depicted as grammar that is internally a decision tree. It is worth noting that while initial
efforts could be needed to understand the working of these systems, the others would
soon be a breeze. Although the initial barrier could be high, the commonalities between
various systems greatly reduce the time required for understanding other open source
systems in the journey.

Common structure of open-source code
systems
The open nature of the ecosystem with code accessible through the internet and the liberal
nature of the licenses meant developers had access to the ecosystem’s knowledge to
understand and use common structures, enabling other systems. For example, hashmaps
and dictionaries share similar implementation in Python, Redis, and Lua. Such striking
similarities can be observed while examining and comparing open-source systems. We can
see that most open-source systems use a similar memory management system to reduce
the number of OS calls. This commonality greatly helps us understand these systems. In
this chapter, we aim to generate higher curiosity by practically using small code snippets
to demonstrate such similarities.

Event loops in network-based systems
Network-based systems provide services on a port and are typically served through the
internet, with clients connecting from across the world. Most of these systems need clients
to connect and access services on a larger scale. Although the concept of event loops will be
covered in detail, it could be considered to make several connected clients share a common

