Pythonic Al

A beginner’s guide to building Al
applications in Python

Arindam Banerjee

www.bpbonline.com

il
Copyright © 2024 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor BPB Online or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online
cannot guarantee the accuracy of this information.

First published: 2024

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55515-919

www.bpbonline.com

i1l

Dedicated to

My pillars, my parents:

Ashim
&
Sipra Banerjee

iv

About the Author

Arindam Banerjee has been working in software development for more than 13 years, playing
central roles as a technical leader and software engineer. He has architected and deployed
numerous data-driven Al solutions to cater to both the data and Al requirements of the
business and to help organizations succeed in their data endeavors without getting caught up
in the hype. Currently, he is a Senior Al consultant at Ernst & Young GDS. He holds a master’s
degree in Computer Science and Engineering from Vellore Institute of Technology, Vellore. He
successfully got many certifications in Al technologies. Furthermore, the author participates as
a speaker at international conferences and writes research papers on Al-related topics. He has
filed nine patents till now.

About the Reviewer

Shreyas Kulkarni, originally from Maharashtra, India, is a passionate tech enthusiast with
a wealth of experience in the dynamic field of Data Science. His journey spans a substantial
duration, empowering him with extensive knowledge and expertise in addressing intricate
data and technology challenges.

His forte is crafting ingenious solutions, drawing from a diverse skill set encompassing
exploratory data analysis, model development, innovative experimentation with cutting-edge
AT solutions, and managing the entire data lifecycle. Shreyas excels at simplifying intricate
tasks, resulting in the efficient automation of complex processes. His expertise in code delivery
ensures a seamless project implementation.

In addition to his professional endeavors, Shreyas maintains an engaging personal blog where
he shares his insights, knowledge, and progress in data science through reflective writing and
tutorials. This platform offers readers a unique perspective on learning data science effectively,
making it a valuable resource for those navigating the ever-evolving tech landscape.

Shreyas actively engages with the tech community, generously sharing his knowledge and
insights. Heis drivenby a deep commitment to responsible Al regulation and ethical technology
practices, establishing him as a dedicated advocate for impactful and ethical innovation. His
unique blend of skills and an unwavering passion for technology positions him as a valuable
asset in any endeavor.

vi

Acknowledgement

Writing a book is a journey that traverses both the realms of creativity and perseverance.
This endeavor could not have been accomplished without the support, encouragement, and
contributions of many individuals and entities, who have each played a significant role in
bringing this work to realization.

First and foremost, I extend my heartfelt gratitude to my family for their unwavering support
and encouragement throughout this book's writing. My wife Arismita’s presence motivated
and enabled me to thrive and grow more. My son Mimo’s love sustained me throughout the
writing process.

I am also grateful to BPB Publications for their guidance and expertise in bringing this book
to fruition. I extend my appreciation to the dedicated reviewers, technical experts, and editors
who contributed their time and expertise to reviewing and revising the manuscript. Your
meticulous attention to detail and thoughtful suggestions have played a crucial role in refining
the content and ensuring its quality.

I would also like to acknowledge the valuable contributions of my colleagues and co-workers
during many years working in the tech industry, who have taught me so much and provided
valuable feedback on my work.

Finally, I want to express my profound appreciation to the readers of this book. Your curiosity
and engagement drive the pursuit of knowledge and the sharing of ideas, and it is for you that
this work was undertaken.

vii

Preface

In an era defined by data-driven innovation and transformative technologies, Artificial
Intelligence (AI) holds unprecedented promise. This book is your key to unlocking that
promise, catering specifically to those who are new to both Python and the realm of AL

Imagine being able to harness the potential of Al right from the foundational level without
prior experience. Whether you are a student eager to explore the cutting-edge field of Al, a
professional venturing into new territories, or an enthusiast with a curiosity for what lies
beyond the horizon - this book is crafted for you.

Our journey together will be dynamic and enriching. From the basics of Python programming
to crafting intricate Al solutions for computer visions and natural language processing, this
hands-on guide will accompany you every step. We understand that venturing into Python
and Al simultaneously can be daunting, so we have meticulously structured the content to
ease your transition into this exciting realm.

As we delveinto the chapters, you will witness how Python, alanguage known for its simplicity
and versatility, blends seamlessly with A, a technology thatis shaping industries and redefining
possibilities. Throughout the book, you will learn about the key features of convolutional neural
networks, sequence models, attention-based models, transformers, generative adversarial
networks, and so on, and how to use them to build enterprise applications that are efficient,
robust, and easy to maintain. You will also learn about best practices and will be provided with
numerous practical examples to help you understand the concepts. The book does not assume
any prior knowledge; instead, it empowers you with a clear understanding of foundational
concepts, building your confidence to create Al applications with Python.

We are excited to introduce you to the captivating world of Al from understanding the
fundamental concepts to embarking on hands-on projects thatillustrate real-world applications.
Along the way, you will develop the technical skills to architect and deploy Al solutions and
cultivate a mindset that thrives on problem-solving and innovation.

This book is a transformative journey that equips you with the tools to shape the future. So,
brace yourself to embark on this adventure, where curiosity meets capability and Python
meets Al

Get ready to witness the fusion of two powerful forces — Python and Al — and to emerge as a
creator, an innovator, and a trailblazer in the realm of technology. Let us dive in and unleash
the potential of Pythonic Al together!

viii

Chapter 1: Python Kickstart: Concepts, Libraries, and Coding - It covers the basics of Python,
its data structures, and object-oriented design. The chapter explains popular Python libraries,
such as NumPy, Pandas, Matplotlib, etc., through examples so that the reader can grasp
the following chapters easily. These libraries are widely used in Al and Machine Learning
applications and profoundly applied in the subsequent chapters along with TensorFlow 2.

Chapter 2: Setting up AI Lab — This chapter starts by introducing Google Colab, a valuable
platform for Python coding that allows users to harness the cloud's capabilities and leverage
GPUs without the need for dedicated infrastructure. Simultaneously, this chapter provides
step-by-step guidance on establishing a local Anaconda environment, ensuring flexibility in
your coding environment. It also explains the potential of Google Colab by teaching you how
to seamlessly integrate it with your Google Drive and GitHub repositories, streamlining your
workflow.

Chapter 3: Design My First Neural Network Model - focuses on harnessing the power of
TensorFlow 2 APIs to craft deep learning models from the ground up, demonstrating the
art of saving and loading TensorFlow models, and harnessing the visualization prowess of
TensorBoard. This chapter unravels the fundamental concepts of Artificial Neural Networks
(ANNSs) and explores creating ANN models in TensorFlow 2 and Keras API, training, fine-
tuning the architecture for optimal performance, and evaluating the models.

Chapter 4: Explore Designing CNN with TensorFlow - allows the reader to learn the
captivating world of image classification, a prominent application of Al. This chapter covers
the intricate workings of Convolutional Neural Networks (CNNs) with hands-on experience
in constructing CNN models using TensorFlow 2. It explores implementing diverse CNN
architectures and harnessing the power of pre-trained CNN models.

Chapter 5: Develop CNN-based Image Classifier Apps — It covers a hands-on journey to
construct end-to-end Convolutional Neural Network (CNN) applications. This chapter focuses
on crafting an artificial intelligence application capable of accurately identifying images using
the CIFAR-10 dataset for training purposes. It explores both building a CNN model from
scratch and leveraging pre-trained models for image classification.

Chapter 6: Train and Deploy Object Detection Models - It shows the pivotal realm of object
detection, a fundamental task in the field of artificial intelligence. The chapter establishes a solid
foundation in the basics of object detection, providing the intuitive understanding necessary
to grasp its intricacies. It also explores the inner workings and differences between popular
object detection algorithms such as SSD, RCNN, and YOLO. The chapter guides you through
the implementation of object detection using pre-trained models within the TensorFlow API.

ix

Chapter 7: Create a Text and Image Reader — It explains Al-powered text recognition or
image-to-text applications. The chapter starts with a hands-on guide to utilizing Tesseract for
Optical Character Recognition (OCR) applications and equips you with the knowledge and
skills to build your own text-reading application. Moving forward, it ventures into the realm
of deep learning, harnessing the power of TensorFlow 2 to create cutting-edge image-to-text
applications.

Chapter 8: Explore NLP for Advanced Text Analysis - It begins the journey into the fascinating
world of Natural Language Processing (NLP), a vital application of Al This chapter navigates
through the practical use of widely used Python libraries like Spacy and NLTK, empowering
you to process raw, unstructured text with ease. Furthermore, it unlocks the power of word
embeddings, demystifying the concept using GloVe to represent words as vectors. It introduces
Word2Vec and guides you through the implementation in TensorFlow.

Chapter 9: Up and Running with Sequence Models - It embarks on a journey through
the intricacies of Recurrent Neural Networks (RNNs), Bi-directional RNNs, Long Short-
Term Memory (LSTM) models, and Gated Recurrent Units (GRUs) using the TensorFlow 2
framework. This chapter also introduces language modeling and guides you through the
implementation.

Chapter 10: Using Sequence Models for Automated Text Classification — It explores how
sequence models, specifically LSTM (Long Short-Term Memory) networks, can be harnessed
to create a powerful Al application for automatic text classification. This chapter covers
understanding the data, performing essential data cleaning and preprocessing, and crafting it
into a format suitable for classification. Through hands-on experience, it explains building and
training an LSTM model using TensorFlow 2, and alongside, also explores the implementation
of a 1-dimensional CNN (Convolutional Neural Network) model.

Chapter 11: Create Attention and Transformer Models — It introduces Attention models, a
pivotal concept in the realm of natural language processing (NLP). This chapter navigates
through various facets of Attention techniques, including self-attention, bi-directional, and
multi-head attention, illuminating their unique roles and building a custom Attention layer in
TensorFlow 2. It then unravels the transformative potential of the Transformer network, which
leverages Attention to turbocharge the training speed of models. It demystifies the deployment
of pre-trained Transformer models in TensorFlow 2 for NLP tasks, offering practical insights
into their implementation.

X

Chapter 12: Generating Captions for Images — It explores the image-to-text Al system to
automatically generate descriptive and contextually relevant captions for given input images.
This chapter builds the image captioning model consisting of the encoder, sequence decoder,
attention, and caption generator components.

Chapter 13: Learn to Build GAN Models - It covers the fascinating world of generative
modeling, providing a concise overview of both Discriminative and Generative models. This
chapter introduces the Variational Encoder, a key concept in the realm of generative models.
It also explains the construction of a powerful Generative Adversarial Network (GAN) model
using Tensorflow 2.

Chapter 14: Generate Artificial Faces Using GAN - It covers the conditional Generative
Adversarial Networks (cGANs) and their extraordinary ability to generate synthetic face
images belonging to specific age categories. This chapter unveils the architecture of the
conditional GAN and develops the model using TensorFlow 2 APL

xi

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/a3iaué6c

The code bundle for the book is also hosted on GitHub at https://github.com/bpbpublications/
Pythonic-Al In case there’s an update to the code, it will be updated on the existing GitHub
repository.

We have code bundles from our rich catalogue of books and videos available at https://github.
com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the
accuracy of our content to provide with an indulging reading experience to our subscribers.
Our readers are our mirrors, and we use their inputs to reflect and improve upon human
errors, if any, that may have occurred during the publishing processes involved. To let us
maintain the quality and help us reach out to any readers who might be having difficulties due
to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.bpbonline.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
withus at:

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical articles, sign

up for a range of free newsletters, and receive exclusive discounts and offers on BPB
books and eBooks.

xii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the world,
New Release and Sessions with the Authors:

https://discord.bpbonline.com

xiii

Table of Contents

1. Python Kickstart: Concepts, Libraries, and Coding 1
INErOAUCHON ..o 1
SHUCEUT® ottt 1
ODJECHIVES ...ttt 2
Introduction to Python ..o 2

USING COlAb........cooviiiiiiiiiiiiiiciciciciciciciciicit s 2
PYthon 0ariables...............cccvviiviviiiniiiiiiiiiiiicss e 4
INACHEAHION ..ot 6
Python 0peratorscccvovveeiiiiiiiiiiiiiiiiicicccic s 6
ATTHHINEHIC OPEYALOTS..c..ovvvviiiciiiciiiiiiiic s s 7
COMPATISON OPETALOTS...vvviviieiveieseiiiieieietieie et 7

LOGQICAL OPCTALOTS ..ottt 8
IAentitl) OPErALOTS ..c.cocuvvviviiiiiiciciciciciciiit 8
Membership OPeratorsc.vevevevveieieiiiieiiiiiieieiiiee e 8

Python conditional SEALEMENtS.............cccccvvviviviiiiiiiiiiiiiiiiiicisccesictci i 9
PYLHON L00PS ..ottt 10
Basic Python data Structures ..o 12
LISEoovtiteitcieietctt s 12
TUPLC ...t 15
DACHONATY ..ttt 16
SOttt e 18
REVISTHNG SHANG .ottt 19
PYLHON fUNCHONS ..ot 21
Object-oriented design in PYython ..., 23
ClASS TMHETTHATICE ..o 24
INUMPY oot 26
ReSHAPING ATTAYS....ovoviviiiiiiiciciciciicit st 28
THANSPOSTIG ATTAYS ...ttt 29

xiv

Matrix MultipliCAtIONS.........c.cvvvvviiiiiiiiiiiciiiciitciic 30
NUMDET GENETALIONS ..ottt 31
MatplOtlib......voviiiiiii s 32
CONCIUSION «..vviiiiiicic e er e 35
Points to remMember........ccvviiiiiiii 36
REFEIEICES ...ttt 36
Setting up Al Lab 37
INErOAUCHON ..o 37
SEUCEUTE ..o 37
ODJECHVES .ottt 38
Local environment or Cloudccocoviviviiiiiiiiiiiniiiii s 38
Setting up alocal lab environment.........c.cocooveviiiiniiiiiii 39
Go0gle Colab ..o 42
Utilizing the power of GPU........ccccciiviiiiiiiiiiniiciieceese s 47
Mounting Google DIiVe ..ot 48
Using Google Colab with GItHUDccccoeviiniieiniiiiicccccccceeecaes 51
CONCIUSION .ttt 54
Points t0 reMemMDET........coviiiiiiiiiii e 55
REfEIOICES ...t 55
Design My First Neural Network Model..........cccevererueneuenencncs 57
INErOAUCHON ..o 57
SHUCHUTE oo 57
ODJECHIVES .ttt 58
Basics Of ANN ... 58
The intuition behind the ANN..........ccccocviiivniiiiiiiiiiiiiic s 58
ACHODALION fUNCHON ..ot 60
Deep neutral Nettorkccvvvvvvviviiiiiiiiiiiiiiiccccc s 63
Backpropagation ... 64
LOSS fUNCHOMN ...ttt 64
OPHIIIZET ©.vovovviivviiite et 65
TensorFlow and Keras..........cviiiiiinininiiiiiicns 65

Build our first ANN mMOAEL...evviiiiiiieeieeeeeeeee e e e 66

X0

IIMAZE PYE-PrOCESSING.....ovvvviiiiiiiiiiiciciiiicieieise st 68
Butlding the 10delccuvvvviiiviiiiiiiiiiiiiiiiiiciicc s 69
First approach: Using sequential APL.............cccccovviviiiiiiinnesiciiecinan, 69

Second approach: Using functional APL.............c.ccccooovvvivvinvinivinininiiinininnn, 73

Third approach: Using model Subclassingcoccvvvvvvvvivieiivninicinnnn. 74

Train and evaluate the ANN modelcccooocuviiiiiiiniiiiiiiicc, 75
Compile the MOdelcoviiviiiviiiiiiiiiiiiiiiiiii 75

Fit the 10del.............cc.oovvviiiiiiiiiiiiiiiiiiiciiiiiiiiicccc e 76
Evaluate the t0deloovviviiviiiiiiiiiniiiiiiiiiciiiic e 78
Plotting the loss and metrics VAUESccccvvvvviiiivvvirisiciciiiiiiiiiiiiciiciciia 79
TensorBoard: TensorFlow’s visualization toOlKitccccevivininiiniininininnnn, 81
Hyperparameter tuningccocoeveiieieiiiiiiii s 84
Saving and loading TensorFlow models ..o, 87
Saving and loading a model during training............cccocvvvvvvvviiiciiiisssesnns 87
Saving and loading a model after trAiNINGcccocovvvevevviieciciieieriiieieiee, 88
CONCIUSION .ot 89
Points to remember..........cccoiiiiiiiiiii 89
REfEIENCES ... 90
4. Explore Designing CNN with TensorFlow 91
INErOAUCHON ..o 91
SHUCEUTE oo 91
ODJECHIVES ...oviiiiictctcc e 92
Introduction to convolutional neural NEtWOrkccccoceviiiiiiiiiiiiiiii, 92
The intuition behind the CNN..........ccooviviiiiiiiiiiiiiiiiiiiiicse s 92
CNN architeCtureccvucuviiieiiciiiiciiee s 93
The convolttion LAYEYcocvvvvveiiiiiiiiiiiiiiiiiiccc s 93
Filter of Kernelcccovviviiiiiiiiiiiiiiiiciciciciciciciccict s 93
PAAAING oo 95
SHAAING .ottt 96

The RELU LAYETcuovvviiiiiiiiicieiicieitetee e 97

The POOLING LAYET ...ttt s 98

The fully connected QYTccccvviiiiiiviininiiiiiciiiciiiciiccc s 99

x0i

Generalization teChMIGUESc.cccuevuiueieeieiiiiieiic e saes 99
Handling 0verfittingccoovvviveiiiiiiiiiiiiniiiiciciciscicit st 100
Redefining the model’s architecture............c.coevivieiviiiioiniiniiiiciccceeins 100
ReGUIATIZALIONS ..ot 100
DIFOPOUE ..ottt 101

Data augmentation..............c..cevieeieioinieieiiieieieeneeseee s 102

Batch normalization ... 104
Handling underfitting..........cococovviiiiiiiiiiiiiicicicieciiietseecs s 105
Building with TenSOrFIOWcccviiiiiiiiiiiicc s 105
TensorFLOw dAtAset..............ccccovvviiiiiiviiiiiiiiicisiciiicicisiciciciiict s 106
Utlizing the GPUL.......c.covuiiiiiiiciciiiciiiciiiiiiiiiiiicccs s 107
UHHZING the TPUoveveiviiicieiciiicieieiiieet e 107
Standard CNN architeCturescoeevieiiiriniieiniieieieieeieeeeeieeeee e eeeeseeeenee 109
LENEE .ottt 109
ALBXINEE ..o 110
VGGNEL ..ottt e 111
RESNEL ...ttt 113
INCePHION NELWOTK ...t 114
CONCIUSION «..vviiiiitc s ssae e 115
Points to remMember........cccoiiiiiiiii 116
REfEIOINCES ...ttt 116
5. Develop CNN-based Image Classifier Apps 117
INtrOAUCHON ..o 117
SEUCEUTE ..o s 117
ODJECHVES ..ottt 118
Introduction to image classificationccocoeueiiiiiiniiiciic 118
Understanding the data ..o 118
Data loading and pre-processing............ccoeeiiininininininiiiiiicnieiennes 121
Creating, training, and evaluating the CNN models.........cccccceviuerrienirininnnnnn. 123
Reducing 00erfittinigc.ccveevviiiiiiiiiiiiiiiiiciccicice e 128
DIFOPOULE ..ot 128

ReGUIATIZALION ... 130

Image classification using pre-trained modelscccccovvviiiiiivinniiiiiins 133
VGG16 pre-trained model.................c.ccccoviviviiiiiiiiiiiiiiiiicisiciciiiiiiicnes 133
ResNet50 pre-trained modelc..covvveiviviiniioiiieiiiiiisicicineieeis 137

Use your custom image to classify ..o 140

CONCIUSION .t 143

Points tO reMeMDETc.coiiiiiiiiiii e 144

REfEIONCES ...ttt 144

6. Train and Deploy Object Detection Models 145

INtrOdUCHON ..o 145

SHUCEUT® oottt 146

ODJECHIVES ...vvviiiiict s 146

Object detection - INtUIHON ..o 146

Basics of object detection ... 147
Loss functions in object detection tasks ..., 148
Evaluation MetriCsccvvveviueiiieieiiiiiciiiiiiiiiiiititicssss e 149

AUVCYAGE PYOCISION ..t s 151
Mean average PreciSioncovviviiiiiiieiiiiissinissiisiiesiiiissnns 151
Precision and recallcccoccoovviiiniiiiiiiiiiciciiicii s 151
F1 SCOTC.coviviiiiiiitt 152
Precision-recall CUTDEcovveeviicieiiiiiciccicee s 152
Receiver operating characteristic CUTVE.cccovvvvveeiiiiiiiiiiciiiiciciciinas 152
NON-TAXTIUIT SUPPYESSION ..ottt 152
ANCROT BOXES ..ottt 154
Feature pyramid nettork..............coovvviveviiiieioiiiiieiiiiiieieiice s 155

Understanding object detection models..........ccovuiiiiiiiinniiiiiiiics 155
Single-shot multibox detectoroccvvviiiiiiiviiiiniciniiisisiciciiisiiiccs 155
USING SSD MMOAELS ...t 157

Region-based convolutional neural NetwWorks..........ccccocovvviiiiiniiiiininiinn. 167
Using R-CNN MOAELS..........ccovvviiiiiiiniiiiiiiiiiiiisicisicissssisissiess s 168
YOu 011y 100K O11CE......ooovviiiiiiiriiciiiiee e 171
Using YOLO MOAEIS........cccuvviviiiiiiiiiiiiiiiiiiicicicieccss it 173

CONICIUSION 1ttt et e et e e e et ee e et e eeseeeeeeaaeesaaeeeseasaeessnaaeessssseeesannes 179

x0iii

Points to remMember........ccoiiiiiiiii 180
REfEIOICES ...t 180
7. Create a Text and Image Reader 181
INErOAUCHON .ot 181
SHUCHUTE ..o 182
ODJECHIVES ...t 182
Image-to-text INtUIHONcooviviiiiii 182
Understanding OCR ..o 183
APPLICALIONS....ovvietiiic e 183
Building OCR application using Tesseract...........ccccovviviviveiiiiiiiiiininiiiiennns 184
Building image-to-text applications using TensorFlow 2ccccccoviiviiinininnns 190
CONCIUSION w.oviiiiiici e 200
Points to remMember........cccoiiiiiiiii 201
REfEIOICES ... e 201
8. Explore NLP for Advanced Text Analysis 203
INtrOAUCHON ..o 203
SHUCHUTE ..o 204
ODJECHIVES ...t 204
Introduction to natural language processing.............cceeeuveirvvninvinnncicnienne. 204
Using NLTK fOr NLP....c.ooiiiiiiiiiiiiiiics s 205
TOKEIZAFION ..ottt e 205
SEOPWOTAS TOMOVAL........coovvviiiiiiiiiiciicicscise et 208
SEOTMIMING ..ottt 210
LemmMatiZAtion..........c.cccoovviiiiuiiiiiicieicicieieteiciciiet st 212
Part-of-Speech tagQING........ccovvivvviiiiiiiiiiiiiicicicicicse ettt 213
Using spaCy for NLP.......ccccoiiiiiiiiiic s 215
TOKETIZATION ..ot 216
Part-of-speech tAQQINGcccovviiviiiiiiiiiiiiiiiiicicicsc et 218
Named entityy TeCOGNIHIONc.covvvvviviiviiiiiiiiiiiciiicicicsiesieisieieies et 219
Dependencyy PArsing........ccceeeiviieieiiiiieieiiesiesiisie e 220
LetmMaAtIZALION.ccccovoviiiiiiiiiiiiicicicicicciciciii st 222

SIMIIATIEY oo 223

xix

9.

10.

Word embeddings........ccccovviiiiiiiiiiiiiiiii s
Embeddings in TenSOrFIOW.........ccccoviiiiiniiiiiiiiiii e
Embeddings using GlOVe ..o
CONCIUSION .t
Points tO remMember..........coooiiiiiiiiiii

RELETEIICES .ottt ettt e e e e et ae s seretessaaaeesaatesssanaesssasaeesannees

Up and Running with Sequence Models
INErOAUCHON ..o
SHUCEUTE ..o
ODJECHIVES ...ttt
Introduction to sequence models...........cccovviiiiiniiiniiiiiiii
Build a recurrent neural network model ...

Basics of RNN 0AEIS...........ccvuvuiivvviniciiiiiiiciiiiiiiiiiiiicsiessiss
Different RNN ArCHItECHUTES........cvvvviiiiiiiiiiiiiiiiciciiiicicieiccc et
Building RNN with TensorFIOtw...........cccoveeievoiviieiiiiniciiiiinisiicss e,
Build a long short-term memory model.........cccccocviviiiiiiiiininiiciicc,
Basics of LSTM 1OAESc.ccvuvvivivieiiiiiiiiiiiiiciiiiiiiccce s
Building LSTM with TensorFIotw...........ccoeeevviiieviiieiciiiieieiiicciccieeiesni,
Build a gated recurrent unit modelcccoeviiiiiiiiii
Bidirectional RINN........ccooiiiiiiiiiiiiiiiiis s
Language model and sequence generation..........c.ccoeveueveiivneioicneienincnecnen,
CONCIUSION .t
Points to remember.........coiiiiiiiiiiiii

RELETEIICES .ottt ettt e st e e e st ae s sebeeessaaaeesantesssnaesssaraessannees

Using Sequence Models for Automated Text Classification
INErOAUCHON ..o
SHUCULE ..o
ODJECHIVES ..ottt
Introduction to text classificationcccoovviiiniiiniiiii
Understanding data.........cocoiieiiiiiiiiii

Downloading the dataset.................ccocvvvivvvinivinininiiiiiiiiiiiiiceesssn,

Data manipulation with Python Pandas ...,

XX

11.

Data cleaning and preprocessing............ouueiveininininnininiineeeeenne 274
Build and train sequence models............ccccoiiiiiiniiniiiini 280
LSTM MOGEL........ocoovoioiiiiiiiiiiiiiiciicicciccisice et 281
Bidirectional GRU MOGeL..............cccoovveviiuieiiiiiiieiiiiiicieiciisesscsieesee e 282
Using pre-trained word embeddings...............cccocvvvvvvivniviciniiiiiiniiciiciicnn, 283
Using GloVe word embeddings................ccoeevevoviveviiviecsiicnieiiiiieiciiceienn, 285
Build and train a 1-dimensional CNN model..........cccccovviviviniiniiiiiiiinicns 287
CONCIUSION «..vviiiiitc s ssae e 290
Points tO reMemMDbeTcoiiviiiiiiiiiii s 291
REfEIONCES ...vuevicrici e 291
Create Attention and Transformer Models.........cuuvervureercrencncnnnn. 293
INErOAUCHON .o 293
SHUCEUT® ..ot e 293
ODJECHVES .t 294
Attention in RINN.....oocooiiiiiii s 294
The transformer architecture ... 295
The query, key, and value VECLOTScccccvvvvvvviiiiiiiiiicscsc 295
Self-attention MeCHANISM...........c..ccovvvveviiiieieiiiieieicicie e 296
Encoder and decoderocccvvvviviviiinsiiiiicieiiiiciecceei 296
Multi-headed AtENHIONc.cvvvvvveiiiieieicicieeice s 298
Bidirectional encoder representations from transformers............ccccocevvivninnnnn. 298
Implementing an attention layer ..., 299
Using TensorFlow’s attention [ayercovvvvveiiiiiiiinciiiiicsseiicinas 300
Using a custom attention [ayer...............ocvevveeieioiiioiviieieiiicieeiice e, 303
Implementing a transformer blocK.........ccocoviviiiiiiiiiiiiiiie 305
Using layers from TensorFlow official modelsc.cccocovvvniiiiiinniiiiiinnns 306
Creating a custom transformer lQyerooeevvvvverviveeeiciincisiiiseec, 307
Using pre-trained tANSfOYIMETSccovvvvviiiiiiiiiicisisisiscesiciciiis s 310
Generative pre-trained transformers ..o 315
Using GPT models from Hugging FACe.............cccovvevvveeveiiiieiiiiiisieiiiiiciereinn, 317
Using GPT models from OpenAlccccooieviivvnvniviiiiiiiiiiiiiisiisiccicinns 318

CONCIUSION vttt ettt ettt e e e e e e ettt e e e eseeaeaeeeesessnaateeesessssssasaeesessssnsseaesessnsns 319

xxi

12.

13.

POINES t0 TRIMEIMDET ..ottt eserate s s saaeesesntaessennees
RELEICIICES vttt ettt et sttt st s seat s sabessabssabesaanesneesanes

Generating Captions for Images

INtrOAUCHON ..
SHUCEUT® oot
ODJECHIVES ..ottt
Methodology and approach ...,
Understanding the dataccccoeviiiniiiiiiiciiicce
Preparing the data............cccciiiiniii s

Building the model for image processingcccvcvivvvcivicvissnisissinissisinnn,

Building the model for CAptioningcccccovivvviciiiiiiiiiiiicicicicsisisissisieseieian,
Train and evaluate the caption-generating modelcccccevviniiiiicinininicinnnnns

Creating an LSTM-based modelccccocuvvviniviniiiiniiiiiiisisieisnn,

Creating an attention-based mModelc.cccocvvviviviviiiiiiiiiiiiiisisicii,

Creating a transformer-based modelccccocvvvvviviviciiiiiiiiiiiiicicieinn,
Using pre-trained captioning models from Hugging Face...........ccccccocvvvinnnne.
CONCIUSION .t
Points tO reMeMDETc.coiiiiiiiiiii e
REfEIONCES ...ttt

Learn to Build GAN Modelseeuneverensnrecrerenrencnenens

INtrOdUCHON ..o
SHUCEUT® oot
ODJECHIVES ...vvviiiiict s

GENETATIVE TNOAELS .vvee ettt ettt ettt et re s st eessrteessaaeesnareessnneees

Understanding GANS: AN OVEIVIEWccoovuvuviiiiiiniiiiiiiiiiceesesessssns
The GAN architecture: Generator and disCriminator...........covcvvvvecvrveerervernnnen,
GEIEIALOT oottt sttt
DISCIIMIIALOY <.ttt sttt
Training GANs: Adversarial [earningccccvvvivivivininiiiiniiniiiiicnnenns
Building @ GAN moOdel ..o,
Variational aUtOENCOAETc.ccevvevirieieirieiiirieiiceietciere ettt

ATCHITCCHUTC .ottt ettt ettt esas sttt esatsseatsssstssssssssraeons

xxii

14.

Training a variational AUEOCNCOAETcccccvvvviviiiiiiiciiiiiiiicccccseiiis 371
Building a variational autoencoder model...........ccccccoviviiiiiiiiiiiiiiiii 371
CONCIUSION .ot 377
Points to remMember........ccoiiiiiiiii 378
REfEIOIICES ...ttt e 378

Generate Artificial Faces Using GAN 379
INtrOAUCHON ..o 379
SHUCHUTE ..ot 380
ODJECHIVES ...t 380
Conditional generative adversarial Networkscccccovvvvnvnniininiiinen, 380
Architecture and training of CGANScccevieiniieiniieiieieeeeee e eeeeeeeaeaenne 381
Applications 0f CGANScccoviiiiiiiiiiiie e 382
Understanding the datac.ccceieiieinieinnieecceeiceeeeeeeeeeeienae 384

Preprocessing metadatan...............cccccccvvvviviviiiiiiiiiiiiiiiisiiis 385
Building the model ..o 388

DISCITINALON c..voviiiii e 388

GEIETALO ..t 389

The final CGAN MOGelccooviiiiiiiiiiciiieiiieiiiiiciiie s 391

Loading dAtasetc.covvviiiiiiiiiiiciiicicicicicicicisi 391

Creating latent points and fake Aataccccoovvvvviiivvciciiviciniiiiciiiccii, 392
Training the CGAN MOdel.........coooiiiiiiniiii e 393
Generate and plot the OULPULccvveuieeiiiciee e 395
CONCIUSION «..vviiiitcicc s a e 397
Points tO reMemMbeT ..o 398
REfEIOICES ...t 398

Index 399-406

CHAPTER 1

Python Kickstart:
Concepts, Libraries,
and Coding

Introduction

Python is crucial for developing Al applications due to its extensive libraries and frameworks.
We need to have some basic knowledge of Python to get the best out of this book. This chapter
will cover the basics of Python and popular libraries widely used in Al applications through
examples. Throughout this chapter, we will use Google Colab notebook for Python coding
so that examples can be run on the cloud without having our infrastructure. We will also
cover popular Python libraries like NumPy and Matplotlib that will be heavily used in the
subsequent chapters, along with TensorFlow.

Structure

In this chapter, we will cover the following topics:
e Introduction to Python
e Basic Python data structures
e Object-oriented design in Python
e NumPy
¢ Matplotlib

2 Pythonic Al

Objectives

By the end of this chapter, we will be able to understand how to write code in Python
programming language. We will have a good idea of Python data structures and object-
oriented programming in Python. This chapter also covers the hands-on implementation of
important Python libraries such as NumPy and Matplotlib.

Introduction to Python

We will have a crash course on Python programming through this chapter. Artificial
Intelligence (AI) technology enables computers to have the intelligence to perform human-
level jobs efficiently. We know that computers can perform jobs faster than humans, and we
need a language to communicate instructions about these jobs to computers. Programming
language serves the purpose of communication language. We write the logic of the intended
task to be performed in a human-readable code, and the programming language converts
it into binary (0s and 1s) that computers understand. Some commonly used programming
languages are Python, Java, C, C++, Javascript, R, Ruby, PHP, and so on.

Python s a general-purpose programming language, and it is used for a variety of applications
such as machine learning, web development, game development, general software
development, and so on. Python is a free, open-source programming language, and its open-
source code is available online. It is a high-level programming language that provides strong
abstraction from low-level computing details.

Python is an independent platform and is accepted and executable in all major operating
systems. Python’s core philosophy is to increase the readability of the code by using proper
whitespaces called indentation. It is widely popular in developing Al applications because of
the presence of its powerful libraries that support data manipulation and numerical computing
in a scalable manner. Let us start learning Python before we jump into developing real-life Al
applications.

Using Colab

We will use Google Colab for writing and executing Python code in this chapter. In Chapter
2, Setting up Al Lab, we will learn about Google Colab in detail. Hence, if you need help
understanding Colab right now, there is no need to worry. We will get it covered in the
upcoming chapters.

Colaboratory, or Colab, was developed by the Google research team that enables anyone to
write and execute Python code from the browser without any local setup. The Colab setup is
hosted in the cloud and is available as a free service. As of now, we need to open our computer’s
browser and go to https://colab.research.google.com/. We will see the following page:

Python Kickstart:

Concepts, Libraries, and Coding 3

(]
<«

(

Q
{x}

(]

€O Welcome To Colaboratory - Cola X | +

C @

(3 httpsy/colab.research.google.com

Welcome To Colaboratory

File Edit View Insert Runtime Tools Help

+ Code + Text 43 Copy to Drive

O X

Table of contents

Getting started
Data science Welcome to Colab!
Machine learning
MoreResources history view, and the command palette.

Featured examples

Section

What is Colab?

Colab, or "Colaboratory", allows you to write and execute Python in your browser, with

B S S SN N |

If you're already familiar with Colab, check out this video to learn about interactive tables, the executed code

Alaw @l @ @

G share £ o

Connect ~ /' Editing S

Figure 1.1: Colab welcome page

Once the Google Colab page is opened, we will go to the File option towards the top-left corner
and click New Notebook from the dropdown (as shown with the red arrow). Google Colab
needs to be logged in using a Google account. If we are already logged in to our Google account
in the browser, clicking on New notebook will open a new Colab Notebook. We need to sign in
to our Google account, and a new notebook will open like the following figure:

D
&

G0 Welcome To Colaboratory - Colz X

C ® 6

L

colab.research.google.com

Welcome To Colaboratory

|File Edit View Insert Runtime Tools Hell

P J

New notebook «

Ctrl+0

Tal
Open notebook

Upload notebook

Save a copy in Drive
Save a copy as a GitHub Gist

Save a copy in GitHub

Save Ctrl+s

Download

Code + Text

Nelcom(

f you're alrea
iew, and the

Figure 1.2: Create a new noteboo

k

4 Pythonic Al

As shown in the following figure, we will see the cursor blinking on the panel in the opened
notebook. This is called a code cell, where we will write the code. On executing the code, if
there is any output, it will appear following the code cell. Now, let us start coding Python in
the Colab Notebook, as shown in Figure 1.3:

[im} €O UntitledO.ipynb - Colaboratory X =

© o Sl ‘colabresearch.google.com 5 = InPrivate 2) &
& UntitledO.ipynb
(Py B Comment &% Share £ o
File Edit View Insert Runtime Tools Help
.+ Code + Text Connect /" Editing ~
c B QL w
R N
(x}
(]
<>
=
>_]

Figure 1.3: Code cell in Colab notebook

Python variables

In a programming language, we need variables to store values. These values can be changed
depending on the logic or instructions passed to the program. Unlike Java, C/C++, etc., we
do not need to mention the variable type (such as integer, float, string, etc.) in Python. The
variable type is automatically created when we assign the value to the variable. First, we create
variables and print their values using Python’s print () function. Refer to the following figure:

+ Code + Text

v [1] a=-5
pi = 3.14
st = "Hello World!"
print(a)
print(pi)
print(st)

5
3.14
Hello World!

Figure 1.4: Variables

The variable a is an integer, pi is a float, and st is a string. We write the code in the notebook’s
code cell and press Shift+Enter on the keyboard. That will execute the cell, and the output

Python Kickstart: Concepts, Libraries, and Coding 5

will appear. Once the output appears, another new code cell is created, and the cursor starts
blinking inside it to accept the next set of codes. Executing the cell may take some time. The
number [1] written at the top left corner in Figure 1.4 is the execution number and may not
match yours.

While coding with any language, commenting is very important. Commenting increases
readability and helps in testing the code. In Python, a single-line comment is created by adding
a #sign before any line in the code. We can add triple double quotes (""") and keep multi-line
comments inside it. The commented part of the code stays in the code but is not executed by
the Python interpreter, as shown in Figure 1.5:

v [3] # This is a single line comment

This is a multiline string
and it can be used as a
multiline comment.

Figure 1.5: Comments in Python

Note: Python does not allow starting any variable name with a number, and the name can
contain only alpha-numeric characters and underscores.

Tip: The best practice in writing code is to create self-descriptive names for the variables.
For example, if we want to create a variable to store temperature data, try to avoid creating
it as “t” and instead use “temperature” as the variable name.

Python provides built-in data types for storing numerical values: int, float, and complex.

The int-type variables store integer numbers, the float-type variables store floating-point
numbers, and complex-type variables store complex numbers. We can check the variable type
using the type() function of Python. A string variable in Python is used to store text data. It
can be created by assigning the value to the variable using single or double quotes, as shown
in Figure 1.6:

v [8] a=°5
pi = 3.14
cn = 2+5j
st "Hello World!"
print(type(a))
print(type(pi))
print(type(cn))
print(type(st))

<class 'int'>
<class 'float'>
<class ‘complex'>
<class 'str'>

Figure 1.6: The type() function

6 Pythonic Al

Python supports working with Boolean-type variables. The Boolean variables can store only
two possible values that are True and False, as shown in Figure 1.7:

[11] flag_1 = True
flag_2 = False
print(type(flag_1))
print(type(flag_2))

<class 'bool'>
<class 'bool'>

Figure 1.7: The Boolean variables

We can also exclusively define the variable type by using the related function. This process is
called casting, as shown in Figure 1.8:

v [13] a =2
print(a) # value of a is 2
print(type(a)) # a is an integer
b = float(a) # casting variable a to float-type and creating the variable b
print(b) # value of b is 2.0
print(type(b)) # b is a float

2

<class 'int'>
2.0

<class 'float'>

Figure 1.8: Casting

Note: Python variables are case-sensitive. Once a variable is created, we cannot change the
case in any part of the name of that variable.

Indentation

Indentation (the white space at the beginning of a line) is crucial in writing Python code.
Coding readability by indentation is the core Python philosophy. The indentation is used to
define the scope of a block of code in Python, and if not properly given, the code will either run
the wrong logic or will not run at all.

Python operators

Python operators are different symbols and keywords used to perform some operation on
the given variables or values. An operator either changes the value of the given variable or
produces a new result. Let us see some of the operators used in Python.

Python Kickstart: Concepts, Libraries, and Coding 7

Arithmetic operators

Arithmetic operators are the symbols that can perform different arithmetic operations on
the given variables or values. The symbols are self-explanatory. Following, we will perform
some common arithmetic operations with the Python arithmetic operators, as shown in the
following figure:

v [18] a = 25
by=16
print(a + b) # addition
print(a - b) # subtraction
print(a * b) # multiplication
print(a/b) # division
print(a//b) # floor division
print(a%b) # modulus
print(a**b) # exponentiation - a raised to the power of b
31
19
150
4.166666666666667
4
1
244140625

Figure 1.9: Arithmetic operators

Comparison operators

We use the comparison operators to compare two values. These are the mathematical symbols
used for comparison, as shown in the following figure:

o a = 25

b=5

print(a==b) # equal
print(al=b) # not equal
print(a>b) # greater than
print(a<b) # less than
print(a>=b) # greater than equal
print(a<=b) # less than equal
False

True

True

False

True

False

Figure 1.10: Comparison operators

8 Pythonic Al

Logical operators

There are three logical operators in Python such as and, or, and not. They combine two
conditional statements. Logical and is true if both the statements are true; otherwise, it is false.
Logical or is true if either of the statements is true; otherwise, false. Logical not is true if the
given statement is false, otherwise true, as shown in the following figure:

v [24] a
b=>5
(5 15
print((a>b) and (c>b))
print((b>c) or (a>b))
print(not(a>b))

25

True
True
False

Figure 1.11: Logical operators

Identity operators

There are two identity operators in Python such as is and is not. These are used to check if two
objects are the same (with the same memory locations) or not, as shown in the following figure:

v [27] a
b =a
(S 6
print(a is b)
print(a is not b)
print(a is c)

5

True
False
False

Figure 1.12: Identity operators

Membership operators

These are used to verify if the given value or variable belongs to a given sequence. In Python,
the sequence is represented as a list, tuple, dictionary, set, and so on. We will know more about
these in the next section. A string can also be considered as a sequence of characters, and
membership operators can be applied to it, as shown in the following figure:

Python Kickstart: Concepts, Libraries, and Coding 9

v [29] a=1[4,1, 6,9, 2]
print(4 in a)
print(12 in a)
print(10@ not in a)

True
False
True

Figure 1.13: Membership operators

Python conditional statements

When we try to write logic in Python, we often need to handle decisions by evaluating the
given conditions. The conditional statements in Python are used to evaluate the conditions and
to route the program’s flow accordingly to the correct direction. Keywords used for conditional
statements are if, elif, and else.

The if statement in Python is used with an expression that evaluates the given condition.
Inside the if block, other statements are written to be executed.

The elif statement is the short form of else if. An elif statement is always preceded by an
if statement. If the condition written after the if keyword is not met, then the program’s flow
goes inside the elif block and evaluates the condition given. Remember, an elif block always
comes with an expression to evaluate a given condition.

The else keyword does not come with any condition to evaluate. If any of the preceding
conditions are not met, the program’s flow goes inside the else block. In this example, we can
see that b is greater than a. Hence, only the print statement inside the elif block is executed.

These conditional blocks can be nested too. That means there can be one conditional block
inside another, and so on.

Refer to Figure 1.14:

[32]

print("a is greater than b.")
elif b > a:

print("b is greater than a.")
else:

print("a and b are same.")

b is greater than a.

Figure 1.14: Conditional block

10 Pythonic Al

Python loops

The loops are used to perform repetitive operations or iterations. Python provides two loop
commands: while and for.

The while loop evaluates a condition and keeps on iterating the statements written inside the
while block as long as the condition is true. Here, in this example, we initiated the variable
i with the value @. The while loop evaluates if i is less than 5 or not. Inside the loop, we are
printing the current value of i and incrementing its value by one. After running 5 times, the
value of i becomes 5. So, the while condition (the value of i is less than 5) fails, and the loop
stops iterating further, as shown in the following figure:

v [34] i=090
while i < 5:
print(i)
i=i+1

AWNRO®

Figure 1.15: While loop

The for loop is mostly used in iterating through a sequence. In Python, the sequence is
expressed as a list, tuple, dictionary, string (sequence of characters), and so on. In the given
example, we are iterating through a list called nums using a for loop. We will know more about
the sequence in the next section. Like conditional blocks, loops can be nested too, as shown in
the following Figure 1.16:

v [1] nums = [10, 20, 30, 40, 50]
for i in nums:
print(i)

10
20
30
40
50

Figure 1.16: For loop

The break statement in Python is used inside a loop to come out of the loop if a given condition
is met. The loop does not iterate through all the items if the break condition is met early. The

Python Kickstart: Concepts, Libraries, and Coding 11

continue statement in Python is used to skip the following statements written inside the loop
block and continue from the next iteration. Refer to the following figure:

v [5] msg = "hello"
for-c-in msg:
JErc==N0F"
break

print(c)

H = m I

v [6] msg = "hello"
for ¢ in msg:
if c=="e":
continue
print(c)

0O H -

Figure 1.17: break and continue

In the first example of Figure 1.17, we are iterating through a string variable called msg and
prints every character. The break statement is used when the character o is reached. Hence,
only h, e, 1, and 1 are printed, and the loop stops from iterating further. So, the character o is
not printed.

In the second example of Figure 1.17, we are iterating the same way, but the continue statement
is used when the character e is reached. Hence, when the match happens, the print statement
is not executed, and the loop again starts from the beginning. So, only h, 1, 1, and o are printed,
and e is not printed.

The range() function in Python is often used with loops. This function creates a sequence
through which the loop can iterate through. The basic syntax of the range() function is:
range(start, stop, step):

e start: the value where the sequence starts; by default, it is 0.

e stop: the value till the point sequence runs (this value is excluded)

e step: every nth value to select for iteration within the start and stop; by default, 1.

12 Pythonic Al

Refer to the following figure:

v [9] for i in range(5):
print(i)

AP WNEO

v [18] for i in range(1, 10, 2):
print(i)

W N VT W

Figure 1.18: The range() function

In the first example of Figure 1.18, we are using the range with a single value. Hence, by default,
the range starts from 0 and goes up to 5 with step 1. In the second example of Figure 1.18 above,
we have mentioned the start, stop, and step values as 1, 10, and 2. Hence, every second value
from 1 to 10 is selected.

Basic Python data structures

Data structures help us in organizing data so that they can be stored and retrieved efficiently. A
single data structure cannot be used in every situation. Based on the logic to be implemented,
we need to think of the best data structure for storing the data inside the program. The basic
data structures that are available in Python are list, tuple, dictionary, and set. These are also
called Python collection data types.

List

Python lists are used to store a collection of values in a single variable. Python lists are defined,
keeping the values inside square brackets. We can also use the 1ist () keyword (list constructor)
to create a list. Let us create a list called city:

1. city = ["Paris", "Mumbai", "New York", "London", "Tokyo"]
We can store a mix of data types in a Python list. For example, there can be an int, a float, and

a string together in a list. There can also be another list as a member element of a list. Refer to
the following;:

1. items = ["Paris", 2, 5.98765, [3, 7, 9]]

Python Kickstart: Concepts, Libraries, and Coding 13

List items can be accessed by their index. Python list’s index starts with 0.
Refer to the following figure:

v ° city = ["Paris", "Mumbai", "New York", "London", "Tokyo"]
print(city[e])
print(city[1])
print(city[-1])
print(city[-2])

[» Paris
Mumbai
Tokyo
London

Figure 1.19: List’s index

As shownin Figure 1.19, if we try to access the first element of the list city, we will use the index
value 0 within a square bracket as city[@]. Similarly, the second element can be accessed
by city[1] and so on. Python also allows us to retrieve the elements from the end using the
negative index. So, city[-1] will return the last element of the list. city[-2] will return the
second last element of the list and so on.

Quite often, we may need to slice a small portion of a list. We can get a range of elements by
index. Remember that slicing does not need any Python function or keyword to perform. We
need to use the indices of the slice range within a square bracket after the list variable’s name.
The basic syntax of the slice is:

list_name[start : stop : step]:
e start: the value of the index where slicing starts.
e stop: the value of the index where slicing stops.

e step: every nth value to select within the start and stop (default value is 1)

The examples in the figure below are shown with different slicing:

v [16] nums = [2,4,6,8,9,1]
print(nums[@:3]) # from @th item up to 3rd item
print(nums[2:4]) # from 2nd item up to 4th item
print(nums[::]) # all the items
print(nums[2:]) # from 2nd items till the end
print(nums[:2]) # from beginning up to 2nd item
print(nums[::-1])# all the items in reverse order
print(nums[::2]) # every second item starting from ©th item

[2, 4, 6]

[6, 8]

[2, 4, 6, 8, 9, 1]
[6, 8, 9, 1]

[2, 4]

[1, 9, 8, 6, 4, 2]
[2, 6, 9]

(9}

Figure 1.20: Slicing

14 Pythonic Al

Python lists are ordered. We can change, add, and remove values from lists once they are
created. Python lists come with some built-in functions.

One important function is 1en(), which returns the length of the list. To add an element at the
end of the list, we need to use the append() function. To count the number of occurrences of a
value in a list, we need to use the count() function. Here, the intended value to search should
be given as the input to the function. The examples are shown in Figure 1.21:

v [20] nums = [2,4,6,4,8,9,4]
len(nums)

7

v [21] nums.append(99)
nums

[2, 4, 6, 4, 8, 9, 4, 99]

v [22] nums.count(4)

3
Figure 1.21: Useful functions

If we want to insert some value to a specific location of the list, we need to use the insert()
function. The index of the location in the list and the value needs to be given as the input to the
function. The pop() function removes an element from the list. By default, the last element of
the list is removed. If we specify any index value inside the pop() function, the element from
that location will be removed. The examples are shown in Figure 1.22:

7 [26] # insert 7 at 1st position
nums = [2,4,6,4,8]
nums.insert(1, 7)
nums

[2, 7, 4, 6, 4, 8]
7 [27] # remove the last item (8)

nums . pop()
nums

[2, 7, 4, 6, 4]

7 [28] # remove the 2nd item (4)
nums.pop(2)
nums

[2, 7, 6, 4]

Figure 1.22: Useful functions

Python Kickstart: Concepts, Libraries, and Coding 15

The reverse() function reverses a list. The sort() function is very widely used in the list data
structure. We often need to sort the list in ascending or descending order. The sort function
takes a binary input called reverse. If the value of reverse is true, the sorting is done in
ascending way. By default, this value is set to false, and the sorting is done in a descending
way. The examples are shown in Figure 1.23:

v' [34] # reverse the list
nums = [2,4,6,4,8]
nums.reverse()
nums

[8, 4, 6, 4, 2]

v [35] #sort the list in ascending order
nums.sort()
nums

[2, 4, 4, 6, 8]

v' [36] #sort the list in descending order
nums.sort(reverse=True)
nums

[8, 6, 4, 4, 2]

Figure 1.23: Useful functions

Tuple

Python tuples are also used to store a collection of values in a single variable. Tuples are
defined, keeping the values inside parentheses. We can also use the tuple() keyword (tuple
constructor) to create a tuple. The main difference between a tuple and a list is that a list is
mutable, but a tuple is immutable. That means once a list is created, we can change the list. We
can add new items to it, remove an existing item, reverse and sort the list, and so on. However,
tuples cannot be changed once they are created. Tuples are used to keep the collection of the
values that are not going to change during the execution of the program. For example, the
coordinates (latitude and longitude) of a city, the seven days of a week, the twelve months of a
year, and so on. For this reason, functions like append(), pop(), reverse(), sort(), insert(),
remove(), etc. are used in the list that is not available for the tuple.

As shown in Figure 1.24, let us create a tuple called weekdays. The 1en() and count() functions
in tuples work the same as they do in lists. Like lists, tuples also allow duplicate values and
a mix of data types. We can retrieve or access the values from the tuples using the index. The
index value starts from 0, and slicing is also possible. Refer to the following figure:

16 Pythonic Al

v [38] weekdays = ("sun","mon","tue","wed","thu","fri","sat")
len(weekdays)

7

v [39] weekdays.count("mon™)

1

v [40] weekdays[@]

‘sun’

v [41] weekdays[1:5]
(‘mon', ‘'tue', 'wed', "thu')

Figure 1.24: Tuple

Dictionary

A dictionary is an important data structure of Python. We have seen that the values stored
in lists and tuples can be accessed by index. The index starts from zero and increments
automatically. Unlike storing data in this way, we often may require storing data in a key and
value pair format where values can be accessed from the data structure by using the correct
key. So, the key is more like an index but fully customizable by the user. Storing data in the key:
value pair makes the dictionary quite optimized for many applications.

A Python dictionary is defined using curly braces inside which comma-separated key:value
pairs are written. All the keys in a dictionary must be unique. However, there can be duplicated
values in a dictionary. Values can be of any data type, but keys must be of immutable data type.
Since Python lists are mutable, they cannot be used as the keys of any dictionary. However,
tuples can be used as the keys in a dictionary. Just like the list and tuple, we can also use the
dict() keyword (dictionary constructor) to create a dictionary.

As we used an index to retrieve data from lists and tuples, we can use the key in a dictionary to
get the corresponding value. As shown in Figure 1.25, the key is used within the square bracket.
We can also insert and update a value by giving the appropriate key. We can use the keys()
function to get the list of all the keys in a dictionary. Similarly, the values() function returns
the list of all the values, as shown in the following figure:

Python Kickstart: Concepts, Libraries, and Coding 17

[43] balls = {"red":1, "blue":6, "yellow":5, "black":3}

[44]

get the value of key "black"
balls["black"]

insert new value for key "green"
balls["green"]=5

{'red': 1, 'blue': 6, 'yellow': 5, 'black': 3, ‘green': 5}

get all the keys and values
print(balls.keys())
print(balls.values())

dict_keys(['red', 'blue', ‘'yellow', 'black', 'green'])
dict_values([1, 6, 5, 3, 5])

Figure 1.25: Dictionary

While iterating through a dictionary, we need to use a for loop. By default, the keys() of
the dictionary are returned for the iteration. However, we can explicitly use the keys() and
values() functions to return the keys and values to be iterated with. We can even use the
items() function to return both the keys and values together, as shown in the following figure:

o ° # print the keys
for ball in balls.keys():
print(ball)

print ("HEEE Rk)

#print the values
for key, val in balls.items():
print(balls[key])

> red
blue
yellow
black
green
3k 3k 3k 3k 3k ok % 3k ok ok ok ok ok ok

1

Ul w o

Figure 1.26: Iterating a dictionary

18 Pythonic Al

Set

Set is another type of Python data structure that stores a collection of values. A set is defined by
writing the comma-separated values inside a curly brace and are unordered. The items inside
a set are not positioned and ordered by index. Hence, we cannot retrieve data from a set using
an index. Once a set is created, we cannot change any of the items present in that set. However,
we can add or remove items from a set. There cannot be any duplicate element present in a set.

If we need to add an item to the set, we need to use the add () function. An item can be removed
from the set using the remove () method, as shown in the following figure:

v [1] nums = {1, 9, 8, 3, 6, 9}
Duplicate item (9) will be counted once
nums

{1, 3, 6, 8, 9}
v [2] nums.add(7)
nums
{1, 3, 6, 7, 8, 9}
v ° nums .remove(7)
nums
{1, 3, 6, 8, 9}

Figure 1.27: Set

Operations from set theory (for example, union, intersection, difference, and so on) can be
performed on Python set data structure as shown in Figure 1.28:

[6] setA = {1, 3, 5, 7}
set_ B = {2, 3, 4, 7}

Union of sets. Duplicate items are considered once
print(set_A.union(set_B))

Intersection of sets. Only common items are considered
print(set_A.intersection(set_B))

Difference of sets
print(set_A.difference(set_B))

{1, 2, 3, 4,5, 7}
{3, 7}
{1, 5}

Figure 1.28: Set operations

Python Kickstart: Concepts, Libraries, and Coding 19

Revisiting string

String-type variables hold raw text data. Handling raw text is crucial in Al, especially for
developing Natural Language Processing (NLP) related tasks. Let us learn different ways of
manipulating strings in Python.

Strings can be considered as a list of characters, and they are iterable like lists. Unlike C/C++
or Java, Python has no separate data type called character. A single character in Python is
considered a string with length 1.

Like a Python list, the characters in a string can be accessed by index. The len() function
works on the string too. It returns the length of the string. Like Python list, slicing can be
used on strings, too. To check if a substring belongs to a string, we can use the in keyword
(membership operator), as shown in the following figure:

[10] msg = "hello world"

Get the first (@th) element
print(msg[@e])

Length of the string
print(len(msg))

Slicing the string - 1st to 4th
print(msg[1:4])

Check if substring "hell" belongs to the string msg
print("hell" in msg)

h

11
ell
True

Figure 1.29: Strings

We can change the case of a string using basic functions. The upper() function converts the
entire string into upper-case. The lower () function does just the opposite. Sometimes, we need
to remove the preceding and trailing whitespaces from a string. Functions used for this task are
rstrip(), Istrip(), and strip(), as shown in the following figure:

20 Pythonic Al

v [12] # String with a leading and trailing whitespaces
msg = " Hello World "

Uppercase
print(msg.upper())

Lowercase
print(msg.lower())

Remove the leading whitespace
print(msg.lstrip())

Remove the trailing whitespace
print(msg.rstrip())

Remove whitespaces from both sides
print(msg.strip())

HELLO WORLD
hello world
Hello World

Hello World
Hello World

Figure 1.30: String functions

The split() functionis quite widely used in manipulating strings. This function splits a string
based on the given separator and returns a list of split strings. By default, the whitespace is
considered the separator. Otherwise, it should be explicitly mentioned. Another widely used
function is join(). It joins all the items of an iterable sequence (list, tuple, dictionary, and so
on) into a single string using the given separator, as shown in the following figure:

v [15] msg = "This is a #hashtag"
print(msg.split())
print(msg.split("#"))

['This', 'is', 'a', ‘'#hashtag']
['This is a ', 'hashtag']

5 [16] words = [uau) "fat", "Cat", "Sat", "On", "the", nmatu]

sentence = .join(words)
sentence

‘a fat cat sat on the mat’

Figure 1.31: String functions

As shown in Figure 1.32, concatenating two strings is possible using the + sign. However, we
cannot concatenate or combine any other datatype with string. If we try to do so, Python will

