
PowerShell
in

7 Days

Liam Cleary

Learn essential skills in scripting and
automation using PowerShell

www.bpbonline.com

ii 

First Edition 2024

Copyright © BPB Publications, India

ISBN: 978-93-55518-910

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in
this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

  iii

Dedicated to

My beloved wife:
Lisa
and

My Children Bethan, Joel, Aidan and Noah

iv 

About the Author

Liam Cleary has been deeply immersed in computer training, programming, and
cybersecurity, discovering his passion for these fields early in his career. His professional
journey led him to work extensively within core infrastructure and security services. He
founded SharePlicity, a consultancy specializing in Microsoft 365 and Azure technologies,
where he spearheads efforts to enhance collaboration, document management, and business
process automation and implements robust security controls. A Microsoft MVP Alumni with
17 years of recognition and a Microsoft Certified Trainer, Liam excels in architecture,
security, and bridging the gap to software development. His recent focus has been on
security within Microsoft 365, Azure, and related platforms. As an educator, Liam develops
online courses for platforms like Pluralsight, LinkedIn Learning, Cloud Academy, and
Cybrary IT and teaches Microsoft Certification courses for Opsgility and Microsoft.
Beyond professional pursuits, Liam is actively involved in community events, from user
groups to conferences, sharing knowledge, coding with his kids, and engaging in various
outdoor adventures.

  v

About the Reviewer

Carole McNally is a tech industry veteran with an extensive 20-year journey. Rooted in
the principles of neurodiversity and a staunch advocate for lifelong learning, Carole has
dedicated her career to making technology accessible to all.

As an Integration Specialist, Carole excels in crafting seamless connections through a
decade of expertise in multilanguage ETL. Her passion lies in innovating solutions that
bridge the gap between technology and users.

Carole's proficiency shines in developing robust integration solutions, utilizing in-house
products, APIs, and third-party tools. With a dynamic approach, she excels in configuring
front-office products, expanding the Microsoft Bot Framework, and implementing
Adaptive Cards to optimize user experiences and operational efficiency.

Within Techwitch Ltd, Carole has provided invaluable technical consultancy, achieving
Cyber Essentials certification, troubleshooting complex issues, and overseeing successful
migrations. Certified as a Conversational Designer, her skills extend to Azure Cognitive
Services and API integrations, showcasing a commitment to staying at the forefront of
industry advancements.

vi 

Acknowledgement

I want to express my deepest gratitude to my family and friends, especially my wife,
Lisa, and my children, Bethan, Joel, Aidan, and Noah, for their unwavering support and
encouragement throughout this book's writing.

I am also grateful to BPB Publications for their guidance and expertise in bringing this
book to fruition. Writing this book was a long journey, with the valuable participation and
collaboration of reviewers, technical experts, and editors.

I also want to acknowledge the valuable contributions of my colleagues and co-workers
during many years working in the tech industry, who have taught me so much and
provided valuable feedback on my work.

Finally, I thank all the readers who have taken an interest in my book and for their support
in making it a reality. Your encouragement has been invaluable.

  vii

Preface

"PowerShell in 7 Days" is a comprehensive guide that aims to demystify the world
of PowerShell scripting and automation. PowerShell is a must-have skill set for IT
professionals and system administrators. This book guides you through PowerShell,
making it an indispensable resource for newcomers and seasoned professionals aiming to
refine their automation skills.

Throughout the book, you will embark on a structured journey that transforms you
from a PowerShell novice to a proficient scripter. Starting from the very foundations of
PowerShell, the book unravels its syntax and core functionalities. As you progress, you
will delve into more advanced topics such as creating complex scripts, managing data
locally and remotely, and effectively using PowerShell for problem-solving and system
troubleshooting.

The book is for beginners and IT veterans looking to integrate PowerShell into their
workflow. Through fundamental concepts and hands-on examples, you will learn
to leverage PowerShell's capabilities to streamline your daily tasks, enhance system
performance, and automate repetitive and complex operations. The focus is on the 'how'
and the 'why,' providing a deep understanding of PowerShell's potential in various job
roles.

By the end of "PowerShell in 7 Days," you will have gained a comprehensive understanding
of PowerShell's capabilities and how to harness them effectively. The book is a learning tool
and a reference guide that helps you in your professional journey. Whether automating a
small task or tackling a large-scale enterprise operation, the insights and skills acquired
here will be valuable to any professional toolkit. Welcome to the world of PowerShell –
let's embark on this journey together.

Chapter 1: Introducing PowerShell – This chapter provides a comprehensive introduction
for readers to understand and leverage PowerShell, Microsoft's task automation and
configuration management framework. It includes essential information on the initial
setup, guidance on the tools required for writing and executing scripts, and an explanation
of PowerShell's powerful capabilities for automating a wide range of administrative tasks.
The chapter also presents a historical perspective of PowerShell's evolution, its various
versions, and the current landscape, setting the stage for why learning PowerShell is
invaluable for IT professionals. Readers will also discover the diverse contexts in which

viii 

PowerShell can be applied, from basic system administration to complex automation
scenarios.

Chapter 2: Setting Up PowerShell – This chapter provides a detailed guide to help
readers install PowerShell on different platforms. It offers specific instructions for each
installation method, including using the PowerShell Gallery for module management
and direct installable packages for Windows users. The chapter also explains how to set
up PowerShell on macOS and Linux. Additionally, the chapter includes a comparative
overview of the various installation methods available. It helps readers make informed
choices that suit their specific requirements and environment.

Chapter 3: Getting Started with Modules and Providers – This chapter provides a
comprehensive understanding of the PowerShell environment, focusing on the critical
roles of modules and providers. In this chapter, readers will learn how to use PowerShell
modules in detail, including their purpose and how to leverage both built-in and external
modules to enhance the shell's capabilities. The various types of providers and how to
interact with different data stores within PowerShell are explained. The chapter also
simplifies the help system, a valuable resource for mastering command syntax and
functionality. Moreover, the chapter discusses the integration and use of WMI and CIM,
demonstrating how to use these powerful tools for system management and information
retrieval.

Chapter 4: Executing PowerShell Commands – This chapter provides readers with
the necessary knowledge to execute PowerShell commands effectively in various
environments. It explains the different types of cmdlets available and the appropriate
way to use them within a Windows setting. The chapter also focuses on specific modules,
teaching readers how to use specialized commands tailor-made for their scripting needs.
Additionally, it emphasizes the importance of command outputs, allowing readers to
interpret and use the data returned from their scripts. Furthermore, the chapter thoroughly
explores the integration of PowerShell with Visual Studio Code, demonstrating how this
powerful editor can enhance scripting efficiency. By the end of this chapter, readers will
have acquired the skills to write and debug PowerShell scripts within Visual Studio Code,
laying a solid foundation for advanced scripting and automation.

Chapter 5: Working with Variables and Pipelines – This chapter is about using variables
and pipelines to manage data flow and storage in scripting. In this chapter, you will learn
about the pipeline operator, a fundamental feature of PowerShell that allows for seamless
output transfer between commands. The chapter covers the creation, manipulation,
and management of variables, from basic data types to complex objects, giving readers
the skills to handle data dynamically within their scripts. Additionally, it discusses the

  ix

nuances of declaring and casting variable types to ensure data integrity and type safety.
The chapter also covers advanced techniques for passing variables between commands,
which enhances script modularity and reusability. Finally, readers will learn sophisticated
strategies for filtering data within pipelines, allowing for refined and precise data
operations. With practical examples and clear explanations, this chapter will give you a
robust understanding of these core PowerShell concepts, ready to implement them in real-
world scenarios.

Chapter 6: Deep Diving PowerShell Objects – This chapter provides detailed insights
into PowerShell objects and their usage in scripting. It begins with the basics of PowerShell
objects, which are crucial for utilizing the scripting language to its full potential. The
chapter covers managing and creating string arrays, a fundamental skill for efficient data
organization and handling. Further, it delves into the intricacies of object properties and
methods, enabling the readers to manipulate custom data structures adeptly. The chapter
also introduces the [PSCustomObject] data type, which offers a dynamic approach to object
creation. Precisely defining data types within PowerShell variables is also emphasized as
a critical practice for script accuracy. The chapter explores export and import cmdlets,
which provide a pathway for maintaining data persistence. Lastly, the chapter concludes
by demonstrating how PowerShell can be connected with .NET objects, expanding the
reader's automation toolkit with the vast capabilities of the .NET framework.

Chapter 7: Using Functions and Parameters – This chapter aims to help readers learn
how to create and use PowerShell functions, which will transform how they script and
automate tasks. The chapter starts with the basics of crafting PowerShell functions, which
will teach you how to encapsulate and modularize code for reusability and maintainability.
After that, we move on to the critical aspect of determining the output of functions, which
ensures that each function serves its intended purpose effectively. The journey continues
by incorporating parameters into functions, significantly enhancing flexibility and
adaptability for various use cases. The chapter further guides you through setting default
values and defining data types for parameters, which is pivotal in maintaining data
integrity and script reliability. The chapter also covers advanced features like parameter
validation and input masks, offering methods to safeguard input and streamline function
execution. Finally, the chapter culminates by demonstrating the integration of these
elements into complex scripts, showcasing the power of tasks in creating sophisticated
and efficient PowerShell tools.

Chapter 8: Flow Control, Looping, and Error Handling – This chapter provides
comprehensive insights into the techniques of controlling script execution using loops
and error handling, which are crucial for robust PowerShell scripting. The chapter starts

x 

with an overview of looping constructs within PowerShell, followed by an in-depth
exploration of the ForEach-Object command and foreach loops, which are vital for iterating
over collections. The chapter then delves into the Switch command, which streamlines
decision-making in scripts based on conditional logic. The latter part of the chapter is
dedicated to the foundational concepts of error handling in PowerShell, emphasizing its
critical importance in scripting for preventing and managing runtime exceptions. Readers
will learn to implement error-handling mechanisms that ensure scripts execute gracefully,
even when encountering unforeseen issues. By the end of this chapter, readers will be
equipped with the knowledge to manage the flow of their PowerShell scripts effectively,
confidently address errors, and maintain control over script outcomes in various scenarios.

Chapter 9: Scripts for Multiple Output Paths – This chapter simplifies the process of
managing the output of PowerShell scripts across different destinations. This chapter
serves as a foundation for understanding PowerShell's output redirection, a valuable
feature that allows you to route script results to the appropriate endpoints. It teaches you
how to use output redirection operators precisely, directing outputs to files, consoles, or
other processes. The chapter then covers the creation of commands capable of generating
multiple output streams, enhancing script versatility. It also discusses techniques for piping
output to various targets to ensure effective data distribution where needed. Additionally,
the chapter presents the skill of splitting output into separate files, along with methods
for appending data to existing files without overwriting valuable information. Finally, the
chapter culminates with strategies for dynamically customizing output destinations using
conditional logic and loops, tailoring the data handling to the script's context. The author
provides practical examples to illustrate how these techniques come together, providing a
template for scripts requiring complex output management.

Chapter 10: PowerShell Remoting, WinRM, and the Invoke-Comma – This chapter
discusses using PowerShell Remoting, WinRM, and Invoke-Command for managing
and scripting on remote computers using PowerShell. The chapter starts by introducing
PowerShell remoting, which is an essential tool for remote management and automation.
It explains Windows Remote Management (WinRM) and its role as the backbone of
PowerShell remoting. The chapter also covers the different configurations, functionalities,
and operational scope of WinRM. Furthermore, the chapter addresses the critical security
aspect and highlights the best practices to ensure safe and secure remote operations. The
readers are guided through the detailed steps to configure remoting in Windows and Linux
environments, which will help them extend their administrative reach across different
platforms. The chapter also explores the New-PSSession and Enter-PSSession cmdlets,
allowing seamless remote connections to Windows and Linux systems. Finally, the chapter
thoroughly examines the Invoke-Command cmdlet, which effectively executes commands

  xi

on remote computers. By the end of this chapter, readers will have a comprehensive
understanding of how to use PowerShell for remote management and automation tasks,
regardless of the operating system.

Chapter 11: Managing On-premises Services – The chapter covers many topics,
including an introduction to specialized PowerShell commands designed for on-premises
administrative tasks. It then provides a detailed guide on configuring and managing
Active Directory, simplifying the complexities involved in user and group management
and highlighting the effectiveness of PowerShell in these critical areas. The chapter also
delves into the management of domain controllers, providing insights into the nuances of
this crucial aspect of network infrastructure. It covers essential network services such as
the Domain Name Service (DNS) and Dynamic Host Configuration Protocol (DHCP),
demonstrating how PowerShell can be a powerful tool for managing them. Additionally,
the chapter explains how to create and manage file shares, which is a crucial task in
maintaining an organization's data accessibility and security. The chapter also explores
managing certificates within Windows Server to ensure a comprehensive understanding
of this vital security component. Finally, the chapter concludes by providing insights
into managing various server roles and features, showcasing PowerShell's versatility in
handling multiple server management tasks. This chapter aims to empower the reader
with the knowledge and skills necessary to manage and optimize on-premises services
using PowerShell, turning routine administrative tasks into streamlined processes.

Chapter 12: Troubleshooting Windows and Performance Optimization – This chapter
starts by delving into system resource analysis, teaching readers how to scrutinize CPU,
memory, disk, and network usage using PowerShell commands. This foundational
knowledge is vital for identifying and addressing performance issues hindering system
responsiveness and reliability. The chapter then transitions into the nuances of diagnosing
and resolving performance bottlenecks, offering practical techniques to pinpoint and
alleviate these critical issues. It teaches readers with PowerShell command expertise, such
as utilizing ping, traceroute, DNS lookups, and firewall configurations, to diagnose and
resolve network problems effectively. In the security realm, the chapter provides in-depth
insights on identifying and remediating security vulnerabilities. Readers will learn to
employ PowerShell for essential security tasks, including malware scanning, updating
Windows Defender, and applying necessary security patches. The chapter also provides
readers with the skills to analyze and filter event logs. By mastering these techniques,
readers can extract critical information about errors, warnings, and events that could
signify underlying system issues. Lastly, the chapter addresses common pitfalls and
challenges of using PowerShell for Windows troubleshooting. It guides handling errors,

xii 

exceptions, and permissions, ensuring readers are well-prepared to tackle real-world
troubleshooting scenarios with confidence and expertise.

Chapter 13: Miscellaneous PowerShell Capabilities – The final chapter covers
PowerShell security. It explains how to secure PowerShell environments, regulate script
execution, and ensure a secure scripting environment. The chapter also discusses methods
for maintaining computer and data security while using PowerShell and implementing
AppLocker policies to turn off unauthorized PowerShell scripts. Additionally, it explains
the importance of signing PowerShell scripts for script integrity and authenticity. Finally,
the chapter offers valuable insights and guidance for IT administrators on the next steps
in their journey with PowerShell.

  xiii

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/9faa44
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/PowerShell-in-7-Days.
In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

xiv 

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

  xv

Table of Contents

 1. Introducing PowerShell ..1
Introduction ...1
Structure ...1
Objectives ...1
Introduction to PowerShell ..2
PowerShell versions and current state ...2
What is PowerShell? ...3
Who is PowerShell for? ..4
When should you use PowerShell? ..4
Conclusion ...5

 2. Setting Up PowerShell ..7
Introduction ...7
Structure ...7
Objectives ...7
Overview of the PowerShell installation options ...8
Installing using an installable package ..10
Installing on a non-Windows platform ..13
Using the PowerShell Gallery ...15
Conclusion ...16

 3. Getting Started with Modules and Providers ...17
Introduction ...17
Structure ...17
Objectives ...18
Introduction to PowerShell modules ...18
Purpose of PowerShell modules ...18
Understand the different types of providers ..19
Use the built-in PowerShell providers ...21

Find all PDF files in your documents folder ...22

xvi 

Add a new value to the PATH environment variable22
Create a new registry entry ...22
Check the existence of a certificate and then import ...23

Import modules from the operating system ...24
Import external PowerShell modules ..28
How to use the help system ..32
Review WMI within PowerShell ..36
Review CIM within PowerShell ...40
Conclusion ...42

 4. Executing PowerShell Commands ..45
Introduction ...45
Structure ...45
Objectives ...46
Discovering commands to execute ...46
Understanding the different types of commands ..55

Cmdlets ...55
Functions ..56
Scripts ...56
Aliases ...57

Executing existing commands within a Windows computer58
Executing commands from specific modules ...60
Understanding the command return or response object63
Using PowerShell in Visual Studio Code ..67
Conclusion ...69

 5. Working with Variables and Pipelines ...71
Introduction ...71
Structure ...71
Objectives ...72
Understanding the pipeline operator ..72
Executing commands that flow into single and multiple pipelines75
Using variables in PowerShell ..78

  xvii

Creating and managing variables in PowerShell ...80
Declaring and casting variable types ...82
Passing variables between commands...87
Techniques for filtering data in the pipeline ...89
Conclusion ...93

 6. Deep Diving PowerShell Objects ...95
Introduction ...95
Structure ...95
Objectives ...96
Understanding PowerShell objects ..96
Creating and managing string arrays ..98
Working with object properties and methods ..100
Creating and managing custom objects ...103
Using [PSCustomObject] data type ..104
Setting specific data types within PowerShell variables107
Using the Export and Import cmdlets ... 111
Understanding and working with .NET objects in PowerShell114
Conclusion ...118

 7. Using Functions and Parameters ...119
Introduction ...119
Structure ...119
Objectives ...120
Creating PowerShell functions..120
Choosing the output of functions ...123
Creating and using parameters in PowerShell functions..............................127
Using default values and data types in parameters130
Advanced parameter features ...132
Passing and returning values in PowerShell functions137
Defining and calling PowerShell functions ...140
Combining functions into complex scripts ...142
Conclusion ...146

xviii 

 8. Flow Control, Looping, and Error Handling ...147
Introduction ...147
Structure ...147
Objectives ...148
Overview of looping within PowerShell ...148
Reviewing the ForEach-Object command ...149
Reviewing foreach loops ..151
Reviewing the switch command...154
Looping capabilities ..156
Understanding error handling basics ..158
Implementing error handling to control the flow ..159
Conclusion ...166

 9. Scripts for Multiple Output Paths ...167
Introduction ...167
Structure ...167
Objectives ...168
Introduction to PowerShell output redirection ..168
Using output redirection operators ..168
Creating commands that produce multiple outputs170
Piping output to multiple destinations ..175
Splitting output into different files ...177
Appending results to existing files ...179
Customizing output destinations with conditional statements and loops 180
Examples of scripts with multiple output paths ..183
Conclusion ...184

 10. PowerShell Remoting, WinRM, and the Invoke-Command............................185
Introduction ...185
Structure ...185
Objectives ...186
What is PowerShell remoting? ..186
Understanding WinRM and its role in PowerShell remoting188

  xix

Understanding the security implications of PowerShell remoting189
Configure remoting within Windows ..191
Configure remoting within Linux ..193
Creating and using a remote session with New-PSSession and
Enter-PSSession ...196
Remotely connecting to Windows and Linux using PowerShell199
Using Invoke-Command to execute commands on remote computer204
Conclusion ...208

 11. Managing On-premises Services ...209
Introduction ...209
Structure ...209
Objectives ...210
Introduction to PowerShell for on-premises Management210
Configuring and managing Active Directory ...211
User and group management ..216
Managing domain controllers ...222
Managing DNS and DHCP services ..226
Creating and managing file shares ...228
Managing certificates ..230
Managing server roles and features ...232
Conclusion ...234

 12. Troubleshooting Windows and Performance Optimization235
Introduction ...235
Structure ...235
Objectives ...236
Analyzing system resources ..236
Diagnosing and resolving performance bottlenecks242
Troubleshooting network connectivity issues ..247
Identifying and remediating security vulnerabilities252
Analyzing and filtering event logs ...255
Challenges in using PowerShell for Windows troubleshooting259

xx 

Handling complex error messages ..259
Execution policy restrictions ...260
Misinterpretation of command outputs ..260
Overlooking security implications ..260

Conclusion ...261

 13. Miscellaneous PowerShell Capabilities ..263
Introduction ...263
Structure ...264
Objectives ...264
Importance of securing PowerShell ...264
Understanding PowerShell Execution Policies ..265
Keeping computer and data secure ..267
Understanding PowerShell Constrained Mode ...269
Using AppLocker policies to disable PowerShell scripts272
Signing PowerShell scripts for reuse ..273
Next steps for the IT administrator ..275
Conclusion ...276

 Index .. 277-282

Introduction
This chapter will introduce you to PowerShell. We will start by reviewing the history of
PowerShell, discussing versions and the current state of PowerShell, as well as providing
an understanding of what PowerShell is and why you should consider using it.

Structure
In this chapter, we will cover the following topics:

• Introduction to PowerShell
• PowerShell versions and current state
• What is PowerShell?
• Who is PowerShell for?
• When should you use PowerShell?

Objectives
By the end of this chapter, you will understand PowerShell, its history, versions, current
state, and rationale for usage.

Chapter 1
Introducing PowerShell

2  PowerShell in 7 Days

Introduction to PowerShell
In November 2006, Microsoft released the first version of PowerShell, the initial release
for Windows only, aiming to automate and simplify administrative tasks in Windows
environments. Microsoft created PowerShell as a powerful scripting language and task
automation framework to surpass the capabilities of the traditional command prompt.

In 2016 Microsoft released PowerShell Core, expanding the reach of the PowerShell
scripting beyond Windows to include macOS and Linux platforms. It has evolved through
multiple versions, with each iteration bringing new features, improvements, and cross-
platform compatibility.

Today, PowerShell is an indispensable tool for system administrators and developers,
offering a robust and flexible solution for managing and automating various tasks across
diverse environments.

PowerShell versions and current state
The initial version of PowerShell was a Windows component only, known as Windows
PowerShell. It only worked within Windows operating systems and provided a limited
subset of capabilities for management. In August 2016, with the introduction of PowerShell
Core, Microsoft made it open-source and cross-platform. The last version of Windows
PowerShell is Windows PowerShell 5.1, and PowerShell 7+ is the successor to PowerShell
Core 6+. The following table outlines the Windows PowerShell, PowerShell Core, and
PowerShell versions and their respective release dates:

Type Version Release Date

Windows PowerShell 1.0 November 2006
Windows PowerShell 2.0 July 2009
Windows PowerShell 3.0 October 2012
Windows PowerShell 4.0 October 2013
Windows PowerShell 5.0 February 2016
Windows PowerShell 5.1 August 2016
PowerShell Core 6.0 January 2018
PowerShell Core 6.1 September 2018
PowerShell Core 6.2 March 2019
PowerShell 7.0 March 2020

Introducing PowerShell  3

Type Version Release Date

PowerShell 7.1 November 2020
PowerShell 7.2 November 2021
PowerShell 7.3 November 2022

Table 1.1: PowerShell versions and releases dates

PowerShell 6+ is installed side-by-side with earlier PowerShell releases. There are two
editions of PowerShell 6+, the desktop and core versions. The desktop version runs on the
.NET Framework, and the core version runs on .NET Core. PowerShell 7+, built on .NET
Core 3.1, adds significant functionality compared to Windows PowerShell and aims to
maintain full backward compatibility with Windows PowerShell.

The .NET Foundation and Microsoft develop and maintain PowerShell versions. They
shifted the development focus to improve its capabilities, performance, cross-platform
compatibility, and operability with different cloud platforms and services. The latest
release supports Windows x64 / x86, Ubuntu, Debian, CentOS, Red Hat Enterprise Linux,
OpenSUSE, Fedora, and macOS and supports multiple processor types. PowerShell 7+
is available for anyone to access and contribute, and it is available within the GitHub
platform: https://github.com/PowerShell.

What is PowerShell?
PowerShell is a task-based command-line shell and scripting language built on the .NET
and .NET Core Frameworks. Microsoft designed this tool to enable IT professionals to
control and automate Windows administration. In contrast to traditional command-line
interfaces, PowerShell revolves around objects. An object is a structure containing data
and operations you can perform on this data.

PowerShell supports providers allowing access to data stores, such as the registry,
certificate store, and file system. Commands, called cmdlets (pronounced “command-
lets”), are single-function commands that manipulate objects in PowerShell. They are the
native commands in the PowerShell stack. In cmdlet names, the verb indicates the action
it performs, while the noun specifies the target of the action. A few example cmdlets are:

• This command lists the items, such as files or folders, in the current or specified
directory:

 Get-ChildItem

• This command creates a new user in the active directory:
 New-ADUser

4  PowerShell in 7 Days

• This command removes specified capabilities from a Windows operating system
image:

 Remove-WindowsCapability

• This command directly puts text or objects you specify into the clipboard:
 Set-Clipboard

The pipeline is a powerful feature in PowerShell, allowing you to pass objects, not just
text, from one cmdlet to another. It enables you to perform complex multiple operations
with a single line of code.

Lastly, PowerShell allows you to write scripts and functions to automate tasks. A script is
a plain text file containing one or more PowerShell commands, while a function is a list
of statements with a name you assign. IT professionals can also distribute written scripts,
making it an excellent solution for consistently managing deployments and configuration.

Who is PowerShell for?
Primarily, PowerShell serves IT professionals, system administrators, and developers who
manage Windows-based systems, but its reach is much more comprehensive. Network
engineers frequently use PowerShell for network-related tasks, from configuration
to automation. Database Administrators (DBAs) often employ it in SQL Server
environments, benefiting from its seamless database management capabilities. In the
era of DevOps, the tool’s scripting and automation proficiency prove indispensable for
DevOps teams. Security experts also leverage PowerShell’s robust features for system
hardening and security audits. Cloud professionals, particularly those engaged with
Azure, find its cmdlets helpful in managing cloud resources. PowerShell is widely used in
various IT roles for its scripting, automation, and administrative capabilities, particularly
in Microsoft environments.

When should you use PowerShell?
PowerShell is a powerful tool for automating administrative tasks and managing systems,
whether those systems are in the cloud or on-premises. Some of the main reasons to use
PowerShell are:

• Automation: PowerShell automates repetitive tasks, reducing manual effort and
errors, particularly in large setups.

• Consistency: Scripting ensures tasks consistently perform similarly, minimizing
errors.

• Efficiency: Automation allows swift completion of complex tasks, freeing time for
other duties.

Introducing PowerShell  5

• Compatibility: Being a Microsoft product, PowerShell works well with other
Microsoft products like Windows Server, Exchange Server, and more.

• Cross-platform: PowerShell Core (version 6+) can run on Linux, macOS, and
Windows, broadening its utility.

• Object-based: PowerShell works with complex data structures, not just text,
making it more powerful than many scripting languages.

• Community support: With a large active community, finding scripts, solutions,
and best practices becomes easy.

• Built-in security: PowerShell incorporates features like execution policy to run
scripts securely.

• Integration with .NET: Being built on .NET, PowerShell can access .NET classes
and objects, opening additional functionality.

Conclusion
In conclusion, PowerShell has emerged as a crucial tool for automating tasks and managing
systems. Since its inception in 2006, PowerShell has made significant strides in evolving its
capabilities and extending its reach to various platforms. From being a Windows-specific
component, it has transitioned to being cross-platform and open-source, encapsulating
enhancements in its functionality and performance. The strength of PowerShell lies in
its object-based operations, integration with .NET, compatibility with Microsoft products,
and vast community support. With a range of features such as automation, efficiency, and
built-in security, PowerShell is an indispensable tool for IT professionals in managing
administrative tasks. As we continue this book, we will delve deeper into its functionalities,
exploring PowerShell’s immense potential in transforming system administration and
task automation.

In the next chapter, we will review the installation of PowerShell, focusing on the various
installation approaches and installing it in a non-Windows environment.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
This chapter guides you through installing PowerShell from various options like the
PowerShell Gallery, installable packages, and on non-Windows platforms such as macOS
and Linux. It provides an overview of these options, detailed instructions for each method,
and considerations for non-Windows installations.

Structure
In this chapter, we will cover the following topics:

• Overview of the PowerShell installation options
• Using the PowerShell Gallery
• Installing using an installable package
• Installing on a non-Windows platform

Objectives
By the end of this chapter, you will understand the various options for installing
PowerShell, including the PowerShell Gallery, installable packages, and alternatives for

Chapter 2
Setting Up PowerShell

8  PowerShell in 7 Days

non-Windows platforms like macOS and Linux. You will follow instructions for each
method and consider the specific needs of non-Windows installations. This knowledge
will enable you to install and use PowerShell in your chosen environment.

Overview of the PowerShell installation
options
Several options exist for installing PowerShell, depending on the platform and version
you wish to install:

• Windows PowerShell: Windows PowerShell 5.1 comes pre-installed on most
modern Windows operating systems, including Windows 10 and Windows Server
2016/2019.

• PowerShell 7+ (Latest version): PowerShell 7+, the successor to PowerShell Core
6+, is cross-platform and works on Windows, Linux, and macOS.

• Windows Package Manager (Winget): For newer Windows 10 and 11 versions,
you can install the Windows Package Manager (Winget) to install PowerShell.

• Docker: If you want a completely isolated environment, you can use Docker to run
PowerShell in a container.

• Azure Cloud Shell: If you are working with Azure, PowerShell is available in the
Azure Cloud Shell. No installation is required.

• Direct installation from a Linux terminal: For Linux distributions, PowerShell
can be installed directly from the terminal using specific commands.

Understanding what gets installed is critical to PowerShell installation. The primary
component is the Windows PowerShell engine, and this core component enables the
execution of PowerShell scripts and commands. It is responsible for various fundamental
aspects of PowerShell’s functionality, such as parsing commands, managing objects,
controlling the pipeline, and invoking cmdlets.

The Windows PowerShell Engine has crucial components that make it work. The
Command Parser interprets command inputs and prepares them for execution, working
with cmdlets, functions, script blocks, and control structures. Unlike other shells that only
handle text, PowerShell uses an object pipeline to pass objects between cmdlets quickly.
Based on the parsed instructions, the engine activates these cmdlets, whether compiled
commands, PowerShell functions, or scripts. This process occurs within the scripting
host and interacts with the session state, including variables, functions, aliases, and more.
Providers, or groups of cmdlets, provide a consistent interface to manage diverse data
stores, with the engine facilitating access to data and storage types such as the registry,
certificate store, and file system.

Setting Up PowerShell  9

Microsoft Windows has pre-installed Windows PowerShell in every version since
Windows 7 and Server 2008. The installed version of PowerShell is different depending on
the operating system. The list below displays which versions of PowerShell are compatible
with various Windows operating systems:

• Windows Vista: PowerShell 1.0
• Windows 7: PowerShell 2.0
• Windows 8: PowerShell 3.0
• Windows 8.1: PowerShell 4.0
• Windows Server 2008/2008 R2: PowerShell 2.0
• Windows Server 2012: PowerShell 4.0
• Windows Server 2012 R2: PowerShell 5.0
• Windows Server 2016: PowerShell 5.1
• Windows Server 2019: PowerShell 5.1
• Windows 10: PowerShell 5.1
• Windows 11: PowerShell 5.1

PowerShell 6+, or PowerShell Core, is cross-platform, enabling installation on various
operating systems, and is the predecessor to PowerShell 7. However, unlike Windows
PowerShell 5.1 and earlier versions, it does not come pre-installed with any operating
system. Even the latest versions of Windows do not include the latest PowerShell; instead,
they come with PowerShell 5.1.

Note: Older versions of Windows operating systems (2008 R2 SP1, 2012, and 2012 R2)
must have the Windows Management Framework 5.1 installed to support Windows
PowerShell 5.

Before installing PowerShell, it is essential to have specific prerequisites in place for your
operating systems, such as Windows, Linux, macOS, Arm, or Docker. The list below
outlines these essential requirements:

•	 Windows: When installing PowerShell on Windows operating systems, Winget
is recommended for Windows clients, while an MSI package is best for Windows
Servers and enterprise deployment. Despite its limitations, the Microsoft Store
package is a more straightforward installation option, especially for casual
PowerShell users. To install multiple versions or ‘side load,’ use the ZIP package
method, which also works for Windows Nano Server, Windows IoT, and Arm-
based systems. .NET developers may prefer the .NET Global tool as another viable
option.

10  PowerShell in 7 Days

• Linux: Different Linux distributions support PowerShell installation. Most Linux
platforms and distributions release a yearly update, including a package manager
for installing PowerShell. Each version of Linux may require a different command
for installation. There are alternate ways of installing PowerShell using the Snap
Package manager, binary archives, or the .NET Global tool.

• macOS: Installing PowerShell on macOS requires 10.13 or higher. The preferred
package manager for macOS, Homebrew, offers one such method. Alternatively,
you can directly download PowerShell or install it from binary archives. Choose
the method that best suits your needs.

• Arm: PowerShell’s support for Arm processors aligns with the support policy of
its underlying .NET version. Although .NET supports a wide range of operating
systems, PowerShell’s Arm support remains limited.

• Docker: Microsoft provides Docker images with PowerShell pre-installed. You
need Docker 17.05 or later to run the released images. Additionally, you should
be able to operate Docker without needing sudo privileges or local administrative
rights.

You must choose the correct installation option for your operating system selected.

Installing using an installable package
To install PowerShell on Windows, you have two options available for download from
GitHub: https://github.com/PowerShell/PowerShell/releases:

• MSI Package is the easiest method and involves downloading a file with a name like
PowerShell-x.x.x-win-x64.msi (for 64-bit systems) or PowerShell-x.x.x-win-x86.
msi (for 32-bit systems), where x.x.x is the version number. Once downloaded,
simply double-click the file to launch the Windows installation wizard.

• ZIP Package is useful if you prefer a portable version or don’t have administrative
rights to install software. The ZIP file will have a name like the MSI but with .zip
at the end. After downloading, extract the files to a folder of your choice and run
PowerShell directly from there.

There are four steps to install PowerShell:
1. Download the MSI file: Navigate to the releases page and download the

appropriate MSI file based on your system architecture (64-bit or 32-bit).

