Mastering Mobile Network and Related Security

Protecting telecom networks in a connected world

Tiju Johnson

www.bpbonline.com

First Edition 2025 Copyright © BPB Publications, India ISBN: 978-93-65897-746

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true and correct to the best of author's and publisher's knowledge. The author has made every effort to ensure the accuracy of these publications, but the publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

Dedicated to

To the two extraordinary women who raised me, thank you for believing in me when I didn't believe in myself. And to my wife and daughter, whose unwavering support and curiosity made this book possible.

About the Author

Tiju Johnson is a seasoned senior security architect with over twenty years of experience in the security field, with nearly a decade in securing telecommunications networks. He has specialized in designing and implementing robust security frameworks for both enterprise and service provider networks and has delivered solutions that address the most complex security challenges while ensuring alignment with industry standards and regulatory requirements. His strength lies in transforming high-level security strategies into actionable implementations that enhance organizational resilience against evolving cyber threats. This book represents the culmination of his hands-on experience and industry insights gained across a decade of securing telecom networks across the globe. He is currently working as a senior security solutions architect and has been part of white paper contributions with 5G Americas.

About the Reviewers

Balkrishna Patil is a technology transformation manager with over 20 years of experience in IT infrastructure and cloud services. He assists clients in successfully executing digital transformation initiatives. With a proven ability to design and implement cloud migration strategies, manage complex IT projects, and provide expert technical guidance, he has dedicated himself to delivering cost-effective, innovative solutions that enhance business agility and resilience.

Balkrishna has led multimillion-dollar projects across diverse industries, including life sciences, oil and gas, education, and federal, state, and local public services. His expertise spans enterprise IT infrastructure, specializing in analyzing, designing, deploying, and supporting cloud and on-premises solutions. Additionally, he has provided strategic technical and functional guidance to business and application teams, ensuring seamless alignment with organizational goals.

Committed to continuous learning, Balkrishna holds several industry certifications, including AWS Certified Solutions Architect (professional and associate), Azure Cloud Practitioner, FinOps Practitioner, and VMware Certified Associate. His core competencies include AWS, Azure, hybrid cloud architecture, cybersecurity, and IT governance, enabling him to drive secure, scalable, and efficient cloud solutions for organizations navigating digital evolution.

Major Sumit Sharma (*Retd.*) is a seasoned cybersecurity professional and Indian Army veteran, currently serving as Senior Manager - Cybersecurity at one of India's premier international airports. In this strategic role, he serves as deputy to the Chief Information Security Officer (CISO), where he leads governance, risk, and compliance (GRC) initiatives and drives both offensive and defensive cybersecurity strategies to protect critical infrastructure. His work ensures alignment of cyber risk with enterprisewide frameworks, reinforcing stakeholder trust in the airport's digital resilience.

Previously, Sumit was a Senior Consultant at Deloitte, specializing in AWS architecture and third-party risk management. His distinguished 12-year tenure in the Indian Army saw him spearhead cutting-edge projects in A1/ML-based drone surveillance, cloud security, and automation for mission-critical operations.

Sumit holds an Executive Business Management certificate from IIM Indore, and is certified in ICS Cybersecurity, ISO 27001, AWS and Microsoft Azure certificates.

Acknowledgement

There are a few people I want to thank for the continued and ongoing support they have given me during the writing of this book. First and foremost, I would like to thank the two extraordinary women who raised me and supported me through thick and thin: my wife for keeping me away from easy streaming distractions, and my daughter for her patience during the many hours I spent writing instead of being with her.

I want to express my profound gratitude to the various telecom service provider projects I was fortunate to be part of during my tenure with Cisco Systems. These experiences not only shaped my understanding of the industry but also allowed me to contribute to nation-building efforts and positively impact millions of lives. I am equally indebted to Dr. Nadhem Al-Fardan, whose inspirational mentorship encouraged me to step beyond my comfort zone and make meaningful contributions to the security industry. Your guidance has been invaluable to both this work and my professional journey.

I would like to thank the team at BPB Publications for their support. I am grateful to all technical reviewers and editors for their helpful feedback and for accommodating the changes to chapter structures that differed from our original plan.

Preface

In an age where communication networks form the invisible infrastructure of our daily lives, the security of telecom service providers has never been more critical. From the earliest days of mobile technology to today's sophisticated 5G networks, telecommunications has undergone a remarkable evolution—one that has created unprecedented opportunities alongside complex security challenges.

This book was born from a simple observation: as telecom networks have evolved to be more powerful, they have also become more vulnerable, and there were very few resources covering the security considerations for this evolution. The systems that connect billions of people worldwide now present an expanded attack surface that spans physical hardware, virtualized infrastructure, cloud environments, and an increasingly softwaredefined ecosystem.

When the first generation of mobile networks emerged, security considerations were often secondary to functionality. The closed, proprietary nature of these early systems offered a form of security through obscurity. Today's networks, by contrast, are built on open standards, utilize commercial off-the-shelf hardware, and rely on software virtualization, creating a fundamentally different security paradigm that demands new approaches and methodologies.

Throughout these pages, we examine the full spectrum of telecom infrastructure, from the **radio access network (RAN)** to the transport networks to the **IP Multimedia Subsystem** (**IMS**), from **Mobile Edge Computing (MEC**) to the core virtualization technologies that underpin modern networks. Rather than treating these as discrete components, we approach telecom security holistically, recognizing that vulnerabilities in one area inevitably affect others.

For security professionals, this book offers practical guidance on implementing robust security architectures across diverse telecom environments. Engineers will find detailed technical analyses of vulnerabilities and countermeasures specific to telecom systems. Students and those new to the field will discover a comprehensive introduction to the unique security challenges of telecom environments.

It is my hope that this book serves as both a warning and a guide, illuminating the risks while providing the knowledge needed to mitigate them. The security of telecom service providers is not merely a technical concern but a societal imperative. The networks we secure today will carry the communications, power the innovations, and connect the communities of tomorrow.

The journey through telecom security is complex and continuing. Let us embark on it together.

This book is divided into 17 chapters. They aim to cover the entire telecom components starting with the first generation of mobile networks and concluding with the fifth generation. The details are listed as follows.

Chapter 1: Global Security Standards and Evolution of Security in Mobility – The chapter explores how global security standards have shaped the evolution of mobility security from the earliest days of cellular networks to today's sophisticated 5G environments. The tracing of critical developments from the minimal security provisions in 1G systems to the comprehensive frameworks we now implement. Drawing from experiences working with major telecom providers, examining how standards bodies like 3GPP and GSMA have responded to emerging threats while balancing security with performance and interoperability.

Chapter 2: Generations of Mobile Networks and 1G – This chapter explores the evolution of mobile networks, focusing on the **first generation** (**1G**) that launched the cellular revolution in the 1980s. It examines how the early analog systems, while revolutionary for their time, were designed with minimal security considerations, lacking encryption and authentication mechanisms that we now consider fundamental. Through analyzing 1G's vulnerabilities, including susceptibility to eavesdropping and call interception, we establish a historical baseline that helps us understand how security requirements have evolved alongside network technologies.

Chapter 3: 2G and Enabled Services – This chapter explores the security landscape of 2G networks and their foundational services that continue to impact modern telecommunications. The chapter examines the vulnerabilities inherent in **Signaling System 7** (**SS7**), which, despite its age, remains a critical protocol underlying much of our global communications infrastructure. It also analyzes the security challenges of SMS services, revealing how these seemingly simple text messages created both revolutionary connectivity and persistent security gaps. Through many experiences implementing security measures across multiple carriers, the demonstration shows how these legacy systems continue to present significant risks even as we advance to newer technologies and provide practical approaches to mitigate these vulnerabilities without disrupting essential services.

ix

Chapter 4: IP Multimedia Subsystem – This chapter explores the critical security considerations surrounding the **IP Multimedia Subsystem** (**IMS**), the architectural framework that has revolutionized how we deliver multimedia services across telecom networks. The chapter examines how IMS bridges traditional voice communications with IP-based services, creating both opportunities and vulnerabilities that security professionals must address. It also shares practical approaches to securing the various IMS components—from the session border controllers to the application servers—while maintaining the performance and flexibility that make IMS so valuable to modern telecom operations.

Chapter 5: Third Generation of Mobile Networks – This chapter examines the 3rd **generation of mobile networks** (**3G**), which marks a pivotal shift in telecom security architecture. It explores how the **universal mobile telecommunications system** (**UMTS**) implemented integrity protection for signaling messages, yet still contained security gaps that malicious actors could exploit. Through these experiences securing numerous 3G networks, the chapter also shares some practical approaches to mitigating these risks while maintaining the performance benefits that made 3G so transformative for mobile communications.

Chapter 6: 4G Mobile Networks – This chapter examines the security architecture of 4th Generation mobile networks, where the all-IP nature of LTE introduced both revolutionary capabilities and novel security challenges. It explores how the evolution from circuit-switched to packet-switched core networks fundamentally changed our approach to telecom security. In the implementation of 4G security frameworks across multiple operators, the chapter also analyzes the effectiveness of LTE's mutual authentication mechanisms, the vulnerabilities in inter-technology handovers, and the security implications of diameter signaling.

Chapter 7: 5G Mobile Networks – In this chapter, the readers will explore the revolutionary 5G ecosystem that has fundamentally transformed how we approach telecom security. It examines how 5G's software-defined architecture, network slicing capabilities, and distributed computing model create both unprecedented opportunities and complex security challenges. In the implementation of security frameworks for early 5G deployments, the chapter details the unique threat vectors targeting various 5G core components. It demonstrates why traditional perimeter-based security approaches fail in 5G networks and presents practical zero-trust implementations that have proven effective across multiple service provider environments.

Chapter 8: Private 5G – This chapter explores the rapidly evolving world of Private 5G networks and their unique security implications for enterprises and critical infrastructure. It examines how these dedicated cellular networks provide organizations with unprecedented control over their communications while introducing distinct security challenges compared to public networks. This chapter also presents frameworks for securing Private 5G deployments through specialized authentication protocols, physical security measures, and threat monitoring systems.

Chapter 9: Network Slicing and Related Security – This chapter explores the revolutionary concept of Network Slicing and its profound security implications for telecom providers. It discusses how this core 5G capability allows operators to create multiple virtual networks atop a shared physical infrastructure, each tailored to specific use cases with unique security requirements. It presents a comprehensive security framework addressing authentication, encryption, and monitoring specifically designed for multi-tenant slice environments. The security of network slicing is not merely a technical challenge; it is fundamental to delivering on 5G's promise of supporting critical services from autonomous vehicles to remote surgery.

Chapter 10: RAN and Transport Security – This chapter examines the critical domain of RAN and Transport Security, where the most vulnerable portions of our telecom infrastructure often reside. It will guide you through the evolution of security controls from physical site security to the complex cryptographic protocols protecting today's front haul and backhaul connections.

Chapter 11: Container Adoption in 5G Networks – In this chapter, the readers will know how container technology has revolutionized 5G network deployment, bringing unprecedented flexibility and scalability to telecom infrastructure. Through practical case studies, the chapter lists how secured containers can strengthen network isolation while enabling the agility demanded by modern telecom operations.

Chapter 12: Perimeter and Edge Security – The chapter examines the critical domain of perimeter and edge security—a fundamental yet increasingly complex aspect of telecom infrastructure protection. The traditional network perimeter has evolved dramatically with the advent of cloud computing, virtualization, and distributed architectures. It will also guide you through the essential strategies for securing these network boundaries, from next-generation firewalls to advanced traffic inspection techniques that protect the entry points to your telecom infrastructure.

Chapter 13: Identity and Access Management – This chapter explores the critical domain of Identity and Access Management within telecom environments—a cornerstone of the zero

trust security approach. It also examines how proper authentication, authorization, and accounting mechanisms create the foundation for securing complex telecom infrastructure spanning from legacy systems to modern 5G networks. Drawing from my field experience, it demonstrates practical implementations of privileged access management, identity federation, and multi-factor authentication tailored specifically for telecom operators.

Chapter 14: Security Monitoring – This chapter explores the critical domain of Security Monitoring within telecom environments. It demonstrates how continuous surveillance forms the backbone of effective security posture, particularly in complex telecom infrastructures spanning from legacy 2G to modern 5G networks. Drawing from my experience implementing monitoring solutions across various telecom providers, it also presents frameworks for establishing security operations centers tailored to telecom-specific threats.

Chapter 15: Network Security Testing – This chapter explores the critical discipline of Network Security Testing in telecom environments. It has detailed how rigorous testing methodologies can uncover vulnerabilities before malicious actors exploit them. The chapter aims to transform security testing from a periodic compliance exercise into an integrated, continuous process that strengthens your network's resilience against evolving threats.

Chapter 16: Beyond 5G – The chapter explores the emerging security landscape that lies beyond 5G technology. As we venture into the realm of 6G networks and quantum communications. The chapter also explores the security challenges that exist are not merely theoretical—they represent real considerations that security professionals must begin planning for today, even as these technologies remain on the horizon.

Chapter 17: Securing Future Networks – This chapter reflects on the critical security insights gained through decades of telecom evolution. The chapter also discusses how security considerations have transformed from afterthoughts to foundational elements of network design, and shares the hard-won lessons that only come from navigating real-world threats and vulnerabilities. Looking ahead, it also explores the emerging security paradigms that will shape our industry as 6G technologies, quantum communications, and AI-driven defenses converge to create both new opportunities and challenges.

Code Bundle and Coloured Images

Please follow the link to download the *Code Bundle* and the *Coloured Images* of the book:

https://rebrand.ly/fedhynh

The code bundle for the book is also hosted on GitHub at

https://github.com/bpbpublications/Mastering-Mobile-Network-and-Related-Security. In case there's an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at **https://github.com/bpbpublications**. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications' Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline. com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At **www.bpbonline.com**, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at **business@bpbonline.com** with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit **www.bpbonline.com**. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit **www.bpbonline.com**.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Table of Contents

1.	Global Security Standards and Evolution of Security in Mobility	1
	Introduction	1
	Structure	1
	Objectives	2
	Global security standards	2
	3rd Generation Partnership Project	2
	Technical Specification Group SA2	3
	Technical Specification Group SA3	4
	Radio Access Network	4
	Core Network and Terminals TSG	5
	ETSI	5
	International Telecommunication Union	7
	GSM Association	8
	National Institute of Standards and Technology	10
	Evolution of security in mobility	12
	Evolution of service provider network from 1G to 5G	
	Conclusion	
	Points to remember	24
	Exercises	25
2.	Generations of Mobile Network and 1G	27
	Introduction	
	Structure	
	Objectives	
	History of mobile generations	
	Analog Era	
	Birth of 2G	
	Mobile internet via 3G	
	Age of mobile broadband	
	Gateway to the future	
	Evolution of mobile networks	
	First generation of mobile networks	

Components of 1G	
Challenges with 1G	
Conclusion	
Points to remember	
Exercises	
3. 2G and Enabled Services	
Introduction	
Structure	
General architecture	
Mobile Equipment	
Base Station Subsystem	
Network Switching Subsystem	
Network interfaces in 2G	
SS7 signaling protocol	
SS7 Protocol Stack and SIGTRAN	
Security threats in SS7 and SIGTRAN networks	54
Securing SS7 signaling protocol	
SS7 firewall deployment options	
Routed mode	
Inline mode	
Categorization of signaling packets	
Category 1: Interface-unauthorized packet	60
Category 2: Home-network packet	60
Category 3: Plausible network packet	60
Configuring SS7 firewall rules	60
SMS service	61
Security threats in SMS service	
Securing SMS service	63
Drawing curtains on 2G	
Conclusion	
Points to remember	
Exercises	
4. IP Multimedia Subsystem	
Introduction	

Structure	72
Objectives	72
General architecture	73
Call session control functions	76
Databases	77
Services	78
Interworking functions	78
Support functions	79
Protocols used in IMS	
Protocol in the session control layer	80
Protocol in the transport layer	80
Protocol in the media and transport control layer	80
Security protocols	
IMS interfaces and reference points	
Vulnerabilities in IMS	
Signaling SIP attacks	
Media flow RTP attacks	
Denial-of-service attacks	
Security functions in IMS	85
Authentication and authorization	86
Secure signaling	87
Media encryption	87
Network security	88
Secure mobility	88
Secure boot and software updates	88
Role of the perimeter firewall in an IMS architecture	89
Role of SBC in securing the IMS architecture	
Topology hiding in IMS with session border controllers	
Overload protection with session border controllers	
SIP security	
Perimeter protection	
Access layer protection	
Protection of SIP interconnects	
Conclusion	
Points to remember	

	Exercises	
5.	Third Generation of Mobile Networks	
	Introduction	
	Structure	
	Objectives	
	General architecture	
	User equipment	
	UTRAN	
	Core network	
	Network interfaces in 3G	
	Vulnerabilities in 3G network	
	Security mechanisms in 3G	
	Cryptographic algorithms	110
	GTP GPRS Tunnelling Protocol	
	Vulnerabilities in GTP	112
	Securing GTP	113
	GTP inspection	
	GTP Firewall deployment scenarios	
	Conclusion	
	Points to remember	
	Exercises	
6.	4G Mobile Networks	
	Introduction	
	Structure	
	Objectives	
	General architecture	
	4G network components and interfaces	
	LTE security	
	LTE mutual authentication	
	NAS security	
	AS security	
	Roaming security	
	SCTP inspection	
	Diameter inspection	

	Diameter Firewall and design considerations	
	Overlay model	
	Perimeter Diameter Firewall	
	Integrated Firewall Design	140
	Diameter Category 1 filtering	141
	Diameter Category 2 filtering	142
	Diameter Category 3 filtering	142
	GTP inspection	143
	Securing VoLTE	
	VoLTE architecture	145
	Securing VoWiFi	148
	VoWiFi architecture	150
	Securing VoBB	151
	VoBB architecture	154
	Conclusion	155
	Points to remember	156
	Exercises	157
7.	5G Mobile Networks	159
	Introduction	
	Structure	160
	Objectives	
	An introduction to 5G	
	3GPP specifications series	
	5G use cases	
	5G network architecture	
	5G network interfaces	
	5G differentiators	
	Virtualization	
	Decomposition and disaggregation	
	Functional decomposition	
	Network disaggregation	
	Service-based architecture	
	Network slicing	
	Edge compute	176
	5G deployment models	

	Virtualization deployment models	
	Vulnerabilities in 5G	
	Inherent security mechanisms in 5G	
	Security mechanism in release 15	
	Security mechanisms in release 16	
	Security mechanisms in release 17	
	Security trust model for 5G	
	Securing service-based architecture	
	Mutual authentication and authorization	
	Token based authentication and authorization	
	Client Credentials Assertion for OAuth enhancement	
	Transport layer security	
	API security	
	Secure service mesh	
	Roaming security	
	Roaming interfaces	
	Roaming Control Plane Security	
	HTTP/2 security	
	JSON security	
	API security	
	Authorization	
	Roaming User Plane Security	
	Key management	
	Conclusion	
	Points to remember	
	Exercises	203
8.	Private 5G	205
	Introduction	
	Structure	
	Objectives	
	An introduction to P5G	
	5G frequency bands	
	Coverage-based spectrum	
	Capacity-based spectrum	
	Latency-based spectrum	

5G bands in P5G	210
Low band spectrum in P5G networks	211
Mid-band spectrum for balanced performance	211
High-band spectrum for ultra-high capacity and low latency	211
P5G use cases	212
Manufacturing and industry 4.0	212
Healthcare and telemedicine	213
Energy and utilities	214
Transportation and logistics	215
Education and research	216
Agriculture and farming	216
Mining and construction	217
P5G vs. Wi-Fi	217
Vulnerabilities in P5G	220
P5G deployment models	222
P5G deployment built by enterprises	223
P5G deployment built by mobile operators	225
RAN sharing model	226
RAN and control plane share a model	228
End-to-end network slicing based model	230
Securing P5G	
Network segmentation	232
Encryption and IPSec	
Firewalls, intrusion detection, and prevention systems	233
Mutual TLS	234
Access control and authentication	234
Security information and event management	
Current challenges in deploying P5G	
Spectrum allocation and licensing	235
Technical complexity and expertise	
Integration with existing systems	
Security, privacy, and regulatory concerns	236
Cost and ROI justification	
Evolving standards and technology	
Conclusion	

	Points to remember	
	Exercises	
9.	Network Slicing and Related Security	
	Introduction	
	Structure	
	Objectives	
	Introduction to network slices	
	Standardization of slices	
	Network functions enabling slices	
	Access and mobility management function	
	Session management function	
	User plane function	
	Network repository function	
	Policy control function	
	Network Exposure Function	
	Authentication Server Function	
	Unified Data Management	
	Network data analytics function	
	Network slice selection function	
	Network slice specific authentication and authorization function	
	Network Slice Admission Control Function	
	Network Slice Subnet Gateway	
	Communication Service Management Function	
	Network Slice Subnet Management Function	
	Cross-domain slice orchestration	
	Industry frameworks for slicing	
	3rd generation partnership project	
	European Telecommunications Standards Institute	
	Next Generation Mobile Networks	
	International Telecommunication Union	
	GSM Association	
	Open Network Automation Platform	
	Soft and hard slicing	
	RAN slicing considerations	
	Transport slicing considerations	

Core slicing considerations	
Slice architectures	
Slice threats	
Security concerns in slices	
Slice lifecycle	
Orchestration and management of slices	
Communication channels	
End devices	
Security controls for slices	
Defense in depth	
Encryption	
Inter and intra-slice controls	
Slice security designs	
Conclusion	
Points to remember	
Exercises	
10. RAN and Transport Security	
Introduction	
Introduction Structure	
Structure	
Structure Objectives	
Structure Objectives Introduction to RAN	
Structure Objectives Introduction to RAN <i>Legacy RAN deployment</i>	286 286 287 287 289 289 289
Structure Objectives Introduction to RAN Legacy RAN deployment Centralized RAN deployment	286 286 287 289 289 289 289 290
Structure Objectives Introduction to RAN Legacy RAN deployment Centralized RAN deployment Virtualized RAN deployment	
Structure Objectives Introduction to RAN Legacy RAN deployment Centralized RAN deployment Virtualized RAN deployment Open RAN deployment	
Structure Objectives Introduction to RAN <i>Legacy RAN deployment</i> <i>Centralized RAN deployment</i> <i>Virtualized RAN deployment</i> <i>Open RAN deployment</i> RAN decomposition	286 286 287 289 289 289 290 290 290 290 291 293
Structure Objectives Introduction to RAN Legacy RAN deployment Centralized RAN deployment Virtualized RAN deployment Open RAN deployment RAN decomposition RAN security	286 286 287 289 289 289 290 290 290 290 291 293 294
Structure Objectives Introduction to RAN Legacy RAN deployment Centralized RAN deployment Virtualized RAN deployment Open RAN deployment RAN decomposition RAN security RAN threats	286 286 287 289 289 289 290 290 290 290 291 293 293 294 296
Structure Objectives Introduction to RAN <i>Legacy RAN deployment</i> <i>Centralized RAN deployment</i> <i>Virtualized RAN deployment</i> <i>Open RAN deployment</i> RAN decomposition RAN security <i>RAN threats</i> RAN interfaces	286 286 287 289 289 289 290 290 290 290 291 293 293 294 294 296 297
Structure Objectives Introduction to RAN Legacy RAN deployment Centralized RAN deployment Virtualized RAN deployment Open RAN deployment RAN decomposition RAN security RAN security RAN threats RAN interfaces Security of gNB internal interfaces	286 286 287 289 289 289 290 290 290 291 293 294 294 294 296 297
Structure Objectives Introduction to RAN <i>Legacy RAN deployment</i> <i>Centralized RAN deployment</i> <i>Virtualized RAN deployment</i> <i>Open RAN deployment</i> <i>RAN decomposition</i> RAN security <i>RAN security</i> <i>RAN threats</i> RAN interfaces <i>Security of gNB internal interfaces</i> <i>F1-C and F1-U reference points</i>	286 286 287 289 289 289 290 290 290 290 291 293 293 294 295 297 297 297
Structure Objectives Introduction to RAN Legacy RAN deployment Centralized RAN deployment Virtualized RAN deployment Open RAN deployment Open RAN deployment RAN decomposition RAN security RAN security RAN threats RAN interfaces Security of gNB internal interfaces F1-C and F1-U reference points Xn-C and Xn-U reference points	

ORAN architecture and interfaces	
ORAN security considerations	
Transport network	
Vulnerabilities in transport network	
Securing transport network	
Physical security	
Device hardening	
Secure device configuration	
Firmware and OS updates	
Access control	
Secure management protocols	
Control Plane Protection	
Access control lists and quality of service	
Logging and monitoring	
Vulnerability management	
Out-of-band management	
Configuration management	
Encryption	
Conclusion	
Points to remember	
Exercises	
11. Container Adoption in 5G Networks	
Introduction	
Structure	
Objectives	
Introducing the evolution of container security	
Inherent capabilities of containers	
Resource efficiency and density	
Portability and consistency	
Rapid deployment and scalability	
Automated lifecycle management	
Enhanced security isolation	
Enabling multi-vendor 5G deployments	
Container vulnerabilities	
Inherent security capabilities	

	Isolation	338
	Resource control and limitation	
	Network policy	
	Secrets management	
	Secure CI and CD process	
	Secure coding and scanning	
	Image signing and verification	
	Configuration validation	
	Conclusion	
	Points to remember	
	Exercises	
12.	Perimeter and Edge Security	
	Introduction	
	Structure	
	Objectives	
	Need for perimeter and edge security	
	Regulatory compliance and standards drivers	
	Traditional infrastructure security	
	MEC and edge infrastructure	
	Perimeter and edge security controls	
	Physical security controls in mobile networks	
	Border gateway security implementation	
	Advanced firewall and access control mechanisms	
	DDoS mitigation and IPS/IDS	
	Security architecture and design	
	Defense in depth strategy	
	Network segmentation	
	Security zones and trust boundaries	
	Encryption requirements	
	MEC security considerations and architecture	
	Conclusion	
	Points to remember	
	Exercises	

13. Identity and Access Management	
Introduction	
Structure	
Objectives	
IAM for telecom infrastructure	
IAM architecture	
Enterprise-wide identity architecture	
Integration with OSS and BSS systems	
Directory services and federation	
Authentication infrastructure	
Multi-factor authentication	
PKI infrastructure for network elements	
SSH key management and rotation	
Authorization framework	
RBAC implementation for network operations	
Segregation of duties in telecom operations	
JIT access for maintenance windows	
Identity lifecycle management	
Onboarding and offboarding workflow	
Service account lifecycle management	
Contractor and vendor access management	
Conclusion	
Points to remember	411
Exercises	
14. Security Monitoring	415
Introduction	415
Structure	416
Objectives	416
Need for security monitoring	417
SOC in telecommunications	419
Approach to SOC integration	
Business use cases	
Fraud detection and prevention	
Regulatory compliance monitoring	
Infrastructure protection and availability	

Network performance and security correlation
Incident response and service level agreements
Customer experience impact analysis 422
Regulatory requirements
Data protection and privacy
Critical infrastructure protection
Lawful interception requirements
Communication service continuity
Incident reporting obligations
Records retention and auditability
Cross-border data handling
Cybersecurity framework alignment
Industry alignment
Data analytics
Network behaviour analytics
Customer experience analytics
Threat intelligence generation 426
Service development insights 426
Cross-domain analysis
Storage considerations
Storage volume planning
Data lifecycle management
Data compression and optimization
Log integration principles
Categorization of devices
Critical security and core network devices
Supporting systems and service platforms
Edge and access network systems 430
Integration priorities and considerations 430
Critical security and core network integration
Supporting systems integration
Selective edge and access network integration 431
<i>Types of logs for integration</i> 431
Log severity levels and their security implications
Domain based integration guidelines

LTE	
Threats and risks in the EPC and LTE environment	
Security use cases for SIEM or SOC implementation	
EPC or LTE network elements and logging requirements	
5G	
Threats and risks in 5G environment	
Security use cases for SIEM or SOC implementation	
5G network elements and logging requirements	
IP Multimedia Subsystem	
Threats and risks in IMS environment	441
Security use cases for SIEM or SOC implementation	441
IMS network elements and logging requirements	
Transport and MPLS network	
Threats and risks in the transport or MPLS environment	
Security use cases for SIEM or SOC implementation	444
Transport network elements logging requirements	445
Value-added services	
Threats and risks in the VAS environment	
Security use cases for SIEM or SOC implementation	
VAS network elements and logging requirements	
Conclusion	
Points to remember	
Exercises	
Network Security Testing	
Introduction	
Structure	
Objectives	
Core security testing	
Infrastructure security testing	
Virtualization layer security	
Network segmentation security	
Security testing tools	
Integration testing	
Authentication and identity management services	
API integration testing	

15.

	Advanced integration testing scenarios	
	Integration resilience testing	
	Regulatory and compliance integration testing	
	Automation and CI/CD testing	
	Building a security-focused CI/CD pipeline	
	Automation compliance verification	
	Continuous security monitoring	
	Tool integration	
	Threat modeling	
	Understanding the modeling use case	
	Building the threat model	
	Real-world threat scenario, location privacy breach	
	Attack pathway	
	Analyzing the threat using STRIDE	
	Implementing security controls	
	Continuous validation and improvement	
	Future considerations	
	Conclusion	
	Points to remember	
	Exercises	476
16.	Beyond 5G	479
	Introduction	
	Structure	
	Objectives	
	Overview	
	Evolution beyond 5G networks and 6G	
	6G network architecture and capabilities	
	Expected 6G performance metrics and use cases	
	Advanced radio technologies in 6G	
	6G, key security considerations	491
	Intelligent network infrastructure	
	Network virtualization and cloudification	
	Digital twin implementation in telecommunications	
	AI-driven network optimization and management	
	Edge computing evolution and distributed intelligence	

Security implications of intelligent infrastructure	
Quantum communications and security	
QKD and PQC	
Quantum network and sensing technologies	
Quantum-safe protocols and network integration	
Space-based communications	
NTN and LEO constellation integration	
Space-ground-air and optical communications	
Security of space-based communication systems	
Conclusion	
Points to remember	
Exercises	
17. Securing Future Networks	
Introduction	
Structure	
Objectives	
Global statistical perspective	
Lessons from major breaches	
Greek Vodafone wiretapping scandal	
SS7 global banking fraud	
China mobile database breach	
Global SIM swap attacks	
European roaming fraud incident	
VoLTE protocol exploitation	
Path forward	
Conclusion	
Index	529-540

CHAPTER 1 Global Security Standards and Evolution of Security in Mobility

Introduction

This chapter delves into the intricate landscape of global security standards and the evolution of security practices in the mobile domain. We will explore the intricate interplay between technological advancements, regulatory frameworks, and the ongoing efforts to fortify our digital infrastructure against emerging cyber threats.

Firstly, we will examine the pivotal role of international organizations and regulatory bodies in developing and promoting security standards for mobile technologies. These standards serve as essential guidelines, ensuring a baseline level of security and interoperability across different platforms and regions.

Furthermore, we will trace the evolution of security measures in mobile devices, networks, and applications, shedding light on cutting-edge technologies and methodologies employed to safeguard mobile systems. From encryption and authentication protocols to secure communication channels and data protection mechanisms, this chapter will provide a comprehensive overview of the security landscape in mobility.

Structure

This chapter will cover the following topics:

• Global security standards

- 3rd Generation Partnership Project
- European Telecommunications Standards Institute
- International Telecommunication Union
- GSM Association
- National Institute of Standards and Technology
- Evolution of security in mobility
- Evolution of service provider network from 1G to 5G

Objectives

Through this comprehensive detailing of global security standards and the evolution of service provider networks, readers will gain a profound understanding of the challenges, solutions, and ongoing efforts to fortify our digital infrastructure, enabling secure and reliable mobile experiences for individuals, businesses, and societies worldwide.

Global security standards

Imagine a set of rules that everyone in a specific industry agrees on. These rules, called standards, guarantee that whatever products, systems, or services are made, they work well and follow the same guidelines. This ensures compatibility, meaning things fit together seamlessly, with safety, consistency, security, and high quality.

To create a new standard, different groups, such as companies that make things, phone carriers, regular people who use them, special interest groups, and even governments, all have to agree. This process guarantees that the final standard is based on the best practices, everyone involved approves, and experts have tested and verified it.

The standardization mechanisms ensure a baseline of best-practice solutions consensually agreed upon, tested, and verified by industry experts. Mobile network technology, from the early generation to the latest, has always evolved following these globally agreed-upon standards.

In the telecommunications industry, there are several global security standards forums and organizations that play critical roles in establishing and maintaining security standards.

3rd Generation Partnership Project

The **3rd Generation Partnership Project** (**3GPP**) is a global leader in mobile communications standardization. It is a collaborative effort driven by telecommunication associations (organizational partners) who work together to develop technical specifications for mobile technologies like 3G, 4G, and the ever-evolving 5G. These specifications ensure seamless connectivity and service interoperability between devices and networks from different vendors around the world.

At the heart of 3GPP are the **Technical Specification Groups** (**TSGs**). These working groups are responsible for creating, approving, and maintaining the technical specifications and reports that define the blueprint for mobile communication systems.

A few crucial TSGs of 3GPP are listed in the following section, with details on their scope of work.

Technical Specification Group SA2

The **Technical Specification Group SA2** (**TSG SA2**) is one of the most crucial groups within the 3GPP standardization organization. SA2 is responsible for the overall system architecture and high-level design of 3GPP-based mobile networks.

The primary focus of SA2 is to specify the core network architecture, defining the functional entities, interfaces, and protocols that enable the seamless operation and integration of the various components within the 3GPP ecosystem. This includes the specification of the **5G system** (**5GS**) architecture, which introduces a new, more flexible, and modular core network design compared to previous generations.

Some of the key areas that SA2 is responsible for include:

- **5G System architecture**: SA2 defines the core network architecture of the 5G system, including the functional entities such as the **Access and Mobility Management Function (AMF)**, **Session Management Function (SMF)**, and **User Plane Function (UPF)**, as well as the interfaces between them.
- **Network slicing**: SA2 specifies the network slicing concept, which allows for the creation of customized logical networks tailored to specific use cases, such as enhanced mobile broadband, ultra-reliable low-latency communications, and massive machine-type communications.
- **Mobility management**: SA2 defines the mobility management protocols and procedures, enabling seamless **User Equipment (UE)** mobility across different access technologies, such as **5G New Radio (NR)**, **Long Term Evolution (LTE)**, and Wi-Fi.
- Session management: SA2 is responsible for specifying the session management functions, including the establishment, modification, and release of user sessions, as well as the associated **quality of service** (**QoS**) parameters.
- **Policy and charging control**: SA2 oversees the policy and charging control framework, which allows for the enforcement of operator-defined policies and the accurate charging of subscriber services.
- **Security and privacy**: SA2 collaborates with other 3GPP groups, such as SA3, to ensure the security and privacy aspects of the core network architecture, protecting the confidentiality and integrity of user data and signaling.

Technical Specification Group SA3

The **Technical Specification Group SA3** (**TSG SA3**) is responsible for defining the security and privacy-related aspects of 3GPP-based mobile networks. As one of the core technical groups within 3GPP, SA3 plays a vital role in ensuring the confidentiality, integrity, and availability of the cellular ecosystem. Their work ensures that mobile communications are protected from unauthorized access and that personal information remains confidential.

Some of the key areas that SA3 is responsible for include:

- Security architecture and protocols: SA3 specifies the overall security architecture of the 3GPP system, including the security protocols and mechanisms used for authentication, key agreement, and data protection. This includes the development of the Authentication and Key Agreement (AKA) protocols, which are essential for secure UE registration and connectivity.
- Network access security: SA3 defines the security measures for controlling access to the 3GPP network, such as the specification of the Universal Subscriber Identity Module (SIM/USIM)-based authentication procedures and the protection of the radio interface against eavesdropping and integrity attacks.
- **Application and service security**: SA3 is responsible for ensuring the security of the various applications and services running on top of the 3GPP network, including the specification of secure protocols for communication between the UE and application servers.
- **Privacy protection**: SA3 is tasked with defining the privacy-related aspects of the 3GPP system, ensuring the protection of user information and the minimization of personally identifiable data collected and processed by the network.
- **Security assurance**: SA3 oversees the development of security assurance specifications, which define the security requirements and testing procedures for 3GPP network elements and user equipment to ensure their compliance with the defined security standards.
- **Security management and monitoring**: SA3 specifies the security management and monitoring functions, enabling the detection and mitigation of security threats and attacks within the 3GPP network.

Radio Access Network

The TSG **radio access network (RAN)** is responsible for the development and specification of the radio access technologies that power cellular networks. This includes the 4G LTE and 5G NR standards, as well as the evolution of previous-generation radio access technologies.

The primary focus of the TSG RAN is to ensure the seamless and efficient operation of the radio interface, defining the protocols and mechanisms that enable UEs to connect and communicate with the cellular network.

Core Network and Terminals TSG

The **Core Network and Terminals (CT)** TSG is responsible for specifying the protocols and interfaces between the network elements and user equipment, ensuring the seamless integration of different components within the 3GPP architecture. The CT TSG's work includes the definition of signaling protocols for call and session management, as well as the specification of the protocols for user data transport, such as the **GPRS Tunneling Protocol (GTP)** and the **Session Initiation Protocol (SIP)**. Additionally, the CT TSG oversees the standardization of terminal capabilities and features, ensuring that user devices can fully leverage the capabilities of the 3GPP network.

By working collaboratively, these TSGs, along with others within the 3GPP, play a pivotal role in shaping the future of mobile communications, guaranteeing a secure, reliable, and ever-evolving mobile experience for users worldwide. A couple of important 3GPP specifications for LTE and 5G include **TS 33.401** and **TS 33.501**.

ETSI

European Telecommunications Standards Institute (ETSI) is a non-profit organization that develops globally applicable standards for information and communication technologies, including telecommunications. It plays a crucial role in the service provider industry by establishing globally applicable Information and Communication **Technologies** (ICT) standards. ETSI brings together a diverse range of stakeholders, including service providers, network operators, manufacturers, and research institutions, to collaborate on developing and maintaining common standards. These standards encompass various aspects of telecommunications networks, services, and protocols, enabling interoperability, security, and quality assurance among different systems and technologies. Service providers heavily rely on ETSI standards to ensure seamless connectivity, roaming capabilities, and the delivery of reliable and secure services to their customers. ETSI's work extends across various domains, including mobile networks (2G, 3G, 4G, and 5G), fixed networks, broadcasting, internet protocols, cybersecurity, and emerging technologies like the **Internet of Things (IoT)** and **artificial intelligence (AI)**. By adhering to ETSI's widely adopted standards, service providers can ensure compatibility, efficient resource utilization, and enhanced user experiences while maintaining regulatory compliance across different regions and countries.

It has several working groups dedicated to security-related standards and protocols for telecommunications, of which some are:

• Security Algorithms Group (SAG): SAG is a specialized group within ETSI that evaluates and recommends cryptographic algorithms for use in telecommunications security standards. They assess the strength and suitability of encryption algorithms for various applications, such as mobile networks, internet protocols, and cybersecurity.