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Preface

MLOps is the intersection of DevOps, data engineering and machine learning. Working in
the field of machine learning is highly dependent on ever-changing data, whereas MLOps
is needed to deliver excellent ML and Al results. This book provides a practical guide to
MLOps for data scientists, data engineers, and other professionals involved in building
and deploying machine learning systems. It introduces MLOps, explaining its core
concepts like continuous integration and delivery for machine learning. It outlines MLOps
components and architecture, providing an understanding of how MLOps supports robust
ML systems that continuously improve.

By covering the end-to-end machine learning pipeline from data to deployment, the
book helps readers implement MLOps workflows. It discusses techniques like feature
engineering, model development, A /B testing, and canary deployments.

The book equips readers with knowledge of MLOps tools and infrastructure for tasks like
model tracking, model governance, metadata management, and pipeline orchestration.
Monitoring and maintenance processes to detect model degradation are covered in depth.
With its comprehensive coverage and practical focus, this book enables data scientists,
data engineers, DevOps engineers, and technical leaders to effectively leverage MLOps.
Readers can gain skills to build efficient CI/CD pipelines, deploy models faster, and make
their ML systems more reliable and production-ready.

Overall, the book is an indispensable guide to MLOps and its applications for delivering
business value through continuous machine learning and Al

Chapter 1: Getting Started with MLOps - This chapter introduces MLOps, explaining
how it combines machine learning, DevOps, and data engineering to enable continuous
delivery of ML models. It covers the importance of MLOps, its principles like reproducibility
and auditability, best practices, and strategies for implementation. The difference
between MLOps and the traditional software engineering and the unique challenges of
productionizing machine learning are also discussed. The chapter provides a foundation
for understanding the MLOps methodology.

Chapter 2: MLOps Architecture and Components - This chapter covers the architecture
and components of MLOps systems. It discusses the building blocks like data pipelines,
model training, deployment, monitoring, and orchestration. The chapter outlines reference
architectures for different maturity levels, from basic to enterprise-grade. It explains
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environment semantics and model deployment patterns. Finally, it walks through an end-
to-end workflow integrating all components across development, staging, and production
environments. The goal is to provide a foundation for designing and implementing MLOps
solutions suitable for various use cases.

Chapter 3: MLOps Infrastructure and Tools - This chapter explores the infrastructure
and tools needed for MLOps. It covers key components like storage, compute, containers,
orchestration platforms, and ML platforms for deployment, model registries, and feature
stores. The chapter discusses public cloud versus on-premises options, standardized
development environments, and build versus buy decisions. It aims to provide guidance
on setting up a robust, scalable infrastructure tailored to an organization’s specific use
cases and resources.

Chapter 4: What are Machine Learning Systems? - This chapter explains what machine
learning systems are and how they differ from ML research. It covers an implementation
roadmap with phases for initial development, transition to operations, and ongoing
operations. The chapter discusses using standardized project structures like cookiecutter
data science to facilitate eventual productionization. It aims to provide a foundation
for taking a full systems approach to developing real-world ML applications, not just
algorithms. The goal is to equip readers with an understanding of all components needed
to build successful ML systems.

Chapter 5: Data Preparation and Model Development - This chapter covers data
preparation and model development within the MLOps lifecycle. It discusses best practices
for version control, preparing data, performing exploratory analysis, feature engineering,
training models, and tracking experiments with MLflow. The chapter shows how these
steps fit into a standardized project structure to enable collaboration and reproducibility.
It aims to provide guidance on implementing key phases of the machine learning lifecycle
in a way that facilitates eventual operationalization and automation.

Chapter 6: Model Deployment and Serving - This chapter covers model deployment and
serving in the MLOps lifecycle. It explores strategies like static, dynamic, and streaming
deployment, comparing deployment on devices versus servers using VMs, containers,
or serverless technologies. The chapter discusses inference options like batch processing
versus real-time APIs. It also looks at deployment patterns like canary releases and multi-
armed bandits for controlled model rollout.

Chapter 7: Continuous Delivery of Machine Learning Models - This chapter explores
methods for implementing continuous integration, continuous training, and continuous
delivery in machine learning systems. It examines ML/AI pipelines and architectural
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maturity levels. Key topics include continuous integration tools like GitHub Actions,
strategies for determining when and what to retrain models on, and considerations for
rapidly deploying updated models into production through continuous delivery.

Chapter 8: Continual Learning - This chapter explores continual learning in machine
learning systems, which involves models perpetually learning and adapting to new data
without forgetting past knowledge. It covers principles like stateful training, challenges
around obtaining fresh data and evaluating updates, and implementing continual
learning in MLOps through triggers and robust monitoring. The goal is to enable frequent
automated model updates while maintaining safety, transparency and control.

Chapter 9: Continuous Monitoring, Logging, and Maintenance - This chapter covers
principles and best practices for monitoring machine learning models across environments.
It examines why continuous monitoring matters, integrating it into MLOps workflows,
logging model metadata and performance data, using frameworks like Evidently and
Alibi Detect, and evaluating models with techniques like A /B testing.
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CHAPTER 1

Getting Started with
MLOps

Introduction

Being an emerging field, Machine Learning Operations (MLOps) is rapidly gaining
momentum with data scientists, Machine Learning (ML) engineers, and Artificial
Intelligence (AI) enthusiasts. In this chapter, we will go over the premise and background
of the MLOps ecosystem. We will try to understand what it is, why it is useful, and what
the principles and best practices are when it comes to MLOps. We will also go over what are
the pillars of a successful MLOps strategy and how MLOps fits with the ROI requirements
of a business.

When looking at MLOps, we can easily relate it to DevOps. DevOps did to software
engineering what MLOps is aiming to do to machine learning engineering. DevOps is
a culture, philosophy, and set of practices that seek to break down the barriers between
development and operations teams, improve collaboration, and deliver software
continuously and reliably. Itinvolves the use of various tools and techniques for developing,
testing, deploying, monitoring, and operating software engineering systems. DevOps was
able to achieve the following for software engineering:

e Shorter development cycles
* Increased deployment velocity

e Automated testing before each deployment



2 Mastering MLOps Architecture: From Code to Deployment

* Auditable system releases

e Continuous monitoring of the system for stability and scalability
Thisbrings us to MLOps. Itis similar to DevOps, but with a focus on the unique requirements
of machine learning and data-specific workflows. It involves the use of practices and tools
for developing, testing, deploying, monitoring, and operating machine learning systems,
while incorporating many of the same principles and practices of DevOps. No single
solution is going to either make or break a plan. Instead, it is essential to understand
the unique requirements of what frameworks might fit into your workflow and have a
comprehensive strategy to implement that. In this chapter and throughout the book, we
will learn how that is achieved. Next, we will discuss the principles and fundamentals of
MLOps and how to use them effectively to get models into production successfully.

Structure

In this chapter, we will discuss the following topics:
¢ Understanding MLOps
* Importance of MLOps
e The evolution of MLOps
e Software engineering projects versus machine learning projects
*  DevOps versus MLOps
¢ Principles of MLOps
* MLOps best practices
¢ MLOps in an organization
¢ MLOps strategy
¢ Implementing MLOps
e Overcoming challenges of MLOps

Objectives

By the end of this chapter, you will have a solid understanding of MLOps and the reason
behind its hype. We will also learn about the fundamental principles and best practices of
MLOps, including reproducibility, transparency, auditability, and scalability.

You will understand the difference between software engineering projects and machine
learning projects and how that impacts the need for MLOps versus traditional DevOps.
We will also cover the evolution of MLOps over time.
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We will discuss the role of MLOps in an organization and why having a good MLOps
strategy matters for successful implementation, and how organizations can unlock business
value from MLOps while overcoming inherent challenges in the machine learning system
implementation.

The chapter will also provide an overview of implementing MLOps in different
environments and how vendors and open-source solutions can accelerate implementation.

Understanding MLOps

MLOps is a set of practices designed for collaboration between data scientists, machine
learning engineers, data engineers, and operations professionals. MLOps is the answer to
the questions:

e Why is machine learning deployment not quick?
e How can we quickly productionize our machine learning models?

e Why can machine learning model deployment be ten times faster?

MLOps is a combination of Machine Learning (ML) and Operations (Ops). It refers to
the processes and practices for designing, building, enabling, and supporting the efficient
deployment of ML models in production and continuously iterating and improving upon
these models.

Similar to DevOps, MLOps is heavily dependent on automation and integrations.
MLOps aims to standardize the deployment and management of ML models alongside
the operationalization of the ML pipeline. It supports the release, activation, monitoring,
performance tracking, management, reuse, maintenance, and governance of ML artifacts.

Following and applying this set of practices simplifies the management of models and
artifacts, automates the deployment of machine learning models, allows us to maintain data
and artifact lineage, and improves the quality and speed of deployment. Implementation
of these practices makes it easier to iterate over model development quickly and better
align models with business needs/requirements.

MLOps combines and is at the intersection of Machine Learning, DevOps, and Data
Engineering, as shown in Figure 1.1, with the goal of reliably and efficiently building,
deploying, and maintaining ML systems in production. It is at the intersection of DevOps,
Data Engineering, and Machine Learning. Machine learning projects and overall systems
are experimental in nature. It consists of components that are comparatively more complex
to build and operate than DevOps components. Other than the building and deployment,
MLOps also needs to account for new components like data drift, the delta between
changes in the data from the last model training and current model training, and so on.
Refer to Figure 1.1:
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Figure 1.1: MLOps as an intersection of three domains

With the base driven by DevOps, MLOps is now slowly evolving into an independent
approach to machine learning lifecycle management. It applies to the entire lifecycle and
key phases being;:

e Data gathering, collecting, and processing raw data

¢ Data analysis

e Data preparation

* Model training and development

* Model evaluation and validation

* Model serving

* Model health monitoring

* Model re-training and iterations

*  Orchestration

¢ Governance
These key phases indicate how work-intensive the entire process can get, especially since
it will most likely need to be repeated multiple times. While it is possibly easier the second

time around since we only must update the model on new data patterns and trends, it
is still a problem that can take up hours of manual labor. After all, the maintenance of
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applications in the software development process is usually where most of the money
and resources go, not the initial development and release of the application. The same
can apply to machine learning models and processes, worsening the overall maintenance
costs.

Figure 1.2 shows the relationship between all the key phases of a machine learning pipeline
and how these phases fit together to allow us to build a complete pipeline. Refer to the
following figure:

Machine Learning Ops (MLOps)

Model Management

Experimentation and Tracking

4 Model Evaluation g

Model
Data Data Data Model
a . . Development Model Serving
Sourcing Analysis Preparation . Deployment

..

'Versioning

Model re-training & iteration

Model Health
monitoring

I S J

Figure 1.2: Machine learning project lifecycle

Goverance

Imagine if we could simply automate this entire process away, allowing us to take full
advantage of high-performance machine learning models without all the hassle. This is
where MLOps comes in.

In Figure 1.2, you will notice there are two more components that are part of MLOps:
Experimentation and Tracking and Model Management. What are those, and how can
we define them?

Experimentation and tracking

Experimentation and tracking are parts of MLOps, which focus on collecting, organizing,
and tracking model training information and artifacts across multiple runs, and using
multiple configurations. As machine learning is experimental in nature, using experiment-
tracking tools to track and benchmark different models and configurations becomes
important.



