
 i

Linux
Kernel

Programming
Developing kernel architecture and device drivers for

character, block, USB, and network interfaces

THIERRY GAYET

www.bpbonline.com

ii

First Edition 2025

Copyright © BPB Publications, India

ISBN: 978-93-65897-364

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true and correct to the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
the publisher cannot be held responsible for any loss or damage arising from any information
in this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

 iii

Dedicated to

My wife, Yuniati Gayet

My children, Angela Gayet and Luca Gayet

iv

About the Author

THIERRY GAYET currently works as a senior developer for TIXEO, a company that has
developed an ultra-secure French video conferencing system validated by the country's
security authority.

He holds a DEST (postgraduate diploma) in computer science, specializing in artificial
intelligence, which he obtained in the late 1990s from CNAM (University of Le Mans).

With over 30 years of experience in Linux development, he has extensively explored
software development. His expertise has also extended to fields such as artificial
intelligence, cybersecurity, and quantum physics.

Dynamic and dedicated to Linux and system hacking, he participates in repair cafés and
continues to design systems based on embedded Linux or IoT.

In the 1990s, when the internet had not yet taken off as much as it does today, he created
a Linux user association or group with the aim of helping to better understand and
popularize the use of Linux.

Author of numerous articles in Linux Magazine and Misc, he has also presented numerous
professional training sessions, conferences, and lectures in various topical areas. In this
book, he shares his knowledge and insights to help you better understand the Linux kernel
and develop your own drivers.

 v

About the Reviewers

v Austin Kim has more than 14 years of experience in embedded Linux Board
Support Package (BSP) development. He has worked on many tasks such as board
bring-up, crash and performance troubleshooting, and bootloader development
for Arm-based devices. He has strong skills in reverse engineering and debugging
binaries using tools like TRACE32, Crash-Utility, and ftrace.

 Currently, Austin works as a Linux kernel BSP engineer at LG Electronics. He
enjoys sharing practical skills in reverse engineering and debugging through
courses about Armv8-A, RISC-V architecture, and kernel crash debugging.

v Martin Yanev is a highly accomplished software engineer with nearly a decade of
experience across diverse industries, including aerospace and medical technology.
Over his illustrious career, Martin has carved a niche for himself in developing
and integrating cutting-edge software solutions for critical domains such as air
traffic control and chromatography systems. Renowned as an esteemed instructor
and computer science professor at Fitchburg State University, he possesses a
deep understanding of the full spectrum of OpenAI APIs and exhibits mastery
in constructing, training, and fine-tuning AI systems. As a widely recognized
author, Martin has shared his expertise to help others navigate the complexities
of AI development. With his exceptional track record and multifaceted skill set,
Martin continues to propel innovation and drive transformative advancements in
the field of software engineering.

vi

Acknowledgement

I would like to express my sincere gratitude to everyone who contributed to the completion
of this book, especially my wife, Yuniati, who encouraged me, and finally, my children,
who helped and supported me throughout the writing process.

I am extremely grateful to BPB Publications for their guidance and expertise in the
completion of this book. Their support and assistance were invaluable in navigating the
complexities of the publication process.

I would also like to thank the reviewers, technical experts, and editors who provided
valuable comments and helped improve this manuscript. Their ideas and suggestions
significantly improved the quality of the book. Finally, I would like to express my gratitude
to the readers who expressed interest in our book. Your support and encouragement were
greatly appreciated.

Thank you to everyone who contributed to the completion of this book.

 vii

Preface

Understanding the fundamentals of an operating system can be relatively complex. This
book has taken on the challenge of popularizing and exploring the various concepts
implemented within the GNU/Linux kernel.

Composed of 13 in-depth chapters, this book covers a wide range of topics essential to
understanding this kernel.

We will begin with a brief introduction to the history and evolution of this kernel. Then,
we will take a block-by-block look at the kernel structure itself, which will form the basis
for the subsequent chapters.

Chapter 4 will describe in detail the device model used to structure files in sysfs and used
within the kernel itself, among other things, by udev.

Chapter 5 will introduce us to the world of character drivers to develop drivers for
keyboards, mice, and many other devices. Chapter 6 will cover another category of drivers:
block drivers used for local or remote network mass storage. At this point, you will have
the tools to develop your own file system if you wish.

Chapter 7 will then follow, describing how to develop drivers for your USB devices.

Chapter 8 will detail the intricacies of the network stack with the various hooks related to
Netfilter. This will be followed by a detailed look at the LSM used to secure a Linux system
through numerous system hooks.

The remaining chapters will finally detail memory, communications systems often linked
to hardware, process management, and debugging.

Through practical examples, comprehensive explanations, and a structured approach, this
book aims to provide the reader with a solid understanding of the GNU/Linux kernel.
Whether you are a novice or an experienced user, I hope this book will be useful for
exploring the fundamentals of this operating system and will help you develop it further
by developing your own extensions or drivers.

Chapter 1: History of the GNU/Linux Kernel - This chapter provides a historical overview
of the kernel's evolution, its inspirations, and the key players who brought this famous
kernel to life.

Chapter 2: Introduction to the Linux Kernel - After providing a historical overview, the
first part will provide a detailed presentation of the kernel architecture. This will then
serve as a key chapter for the rest of the book.

viii

Chapter 3: Introduction to Device Drivers - In the second part, we will explore the
development of a Hello World driver and discuss various compilation techniques, inter-
driver dependency management, and module loading and unloading.

Chapter 4: Linux Device Model - This chapter lays the foundation for the various
registration and declaration processes between drivers, which will be used throughout
the book.

Chapter 5: Character Device Drivers - This chapter covers the development of the first
type of character-based driver.

Chapter 6: Block Drivers and Virtual Filesystem - This second type of block-based driver
is used to manage SATA or network drives.

Chapter 7: USB drivers and libusb - This chapter details the drivers used to control
devices via the USB protocol.

Chapter 8: Network Drivers - The network, at the heart of today's communications, will
be discussed through the implementation of a network card driver. Details of the Netfilter
architecture will also be presented for filtering or your own firewall.

Chapter 9: Linux Security Modules - Like all operating systems, maximum security is
essential. This is what the NSA initiated with SELinux in late 2000 by proposing system-
level hooks allowing precise access control. This chapter will provide a behind-the-scenes
understanding and, perhaps, the opportunity to develop your own LSM.

Chapter 10: Kernel Memory and DMA - This chapter details the physical and virtual
memory management modes. Direct or DMA access without going through the CPU will
also be covered, including NUMA management.

Chapter 11: Navigating Linux Communication Interfaces - Whether it is an embedded
device or a standard motherboard, different hardware communication protocols are used,
such as I2C, to manage peripherals.

Chapter 12: Process Management - Since the GNU/Linux kernel is a multi-tasking, multi-
user system, a scheduler is used to properly schedule the various tasks in the kernel or
user space. Without it, the kernel would be single-tasking.

Chapter 13: Debugging GNU/Linux Kernel and Drivers - Developing is one thing, but
being able to fine-tune a driver or a specific part of the kernel is another. Indeed, due to
their relative complexity, the Linux kernel has seen the development of specific tools that
complement each other. The reader will be given a brief overview of the various tools.

 ix

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/27joie2
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Linux-Kernel-Programming.
In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

x

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

 xi

Table of Contents

 1. History of the GNU/Linux Kernel .. 1
 Introduction ... 1
 Structure... 1
 Objectives .. 1
 Inspirations .. 2
 Linux kernel history ... 7
 Evolutions of the several features by release/milestones .. 11
 Early development (1991-1993) ... 11
 Kernel version 1.0 (1994) ... 12
 Kernel version 2.0 (1996) ... 12
 Kernel version 2.2 (1999) ... 13
 Kernel version 2.4 (2001) ... 14
 Kernel version 2.6 (2003) ... 15
 Kernel version 3.0 (2011) ... 16
 Kernel version 4.0 (2015) ... 17
 Kernel version 5.0 (September 2021) ... 18
 Kernel version 6.0 (October 2022) ... 19
 License of the GNU/Linux ... 20
 Conclusion ... 22

 2. Introduction to the Linux Kernel .. 23
 Introduction .. 23
 Structure... 23
 Objectives .. 24
 Preparing the work environment ... 24
 Introduction to the kernel ... 29
 Downloading the GNU/Linux kernel sources to recompile them 33
 Using distributions’ packages .. 33
 Downloading official tarball from kernel.org .. 36
 Cloning the official Git repo ... 38
 Configuring a custom kernel and modules .. 39
 Building your own kernel ... 47
 Generating a DEB package for Ubuntu/Debian/Mint ... 51

xii

 Packaging for Fedora Core/Red Hat/SUSE .. 52
 Installation ... 54
 Execution and boot sequence ... 55
 Coding styles ... 59
 Conclusion ... 61

 3. Introduction to Device Drivers .. 63
 Introduction .. 63
 Structure... 63
 Objectives .. 64
 User space, kernel space, and syscalls interface .. 64
 Driver’s compilation within or outside the kernel .. 68
 Compilation within the GNU/Linux kernel ... 69
 Compilation outside the GNU/Linux kernel .. 72
 Compilation inside Buildroot project .. 75
 Compilation inside Yocto project ... 76
 Kernel facilities and helper functions .. 78
 Error handling ... 80
 Installing modules .. 81
 Loading and unloading dynamic modules .. 83
 Modules dependencies .. 83
 Modules parameters .. 88
 Modules licensing .. 91
 Modules logging ... 93
 Dynamic kernel module support ... 95
 Installation ... 97
 Configuration ... 97
 Functioning .. 100
 Adding DKMS support for a driver... 101
 Generation for the current kernel ... 103
 Installing a module managed by DKMS .. 105
 Uninstalling a driver managed by DKMS .. 107
 Removing.. 107
 Conclusion ... 109

 4. Linux Device Model ...111
 Introduction ...111

 xiii

 Structure..111
 Objectives .. 112
 Linux device model data structure .. 112
 The bus model ... 115
 Devices connected to the bus .. 118
 The device models .. 121
 The driver model .. 126
 The classes ... 130
 About procfs .. 132
 About the DTB device tree .. 139
 Purpose ... 140
 Compilation command ... 142
 Using U-Boot to Load DTB ... 143
 Conclusion ... 144

 5. Character Device Drivers .. 145
 Introduction ... 145
 Structure... 145
 Objectives .. 146
 Types of drivers .. 146
 The mknod command .. 147
 Communication userspace/kernel .. 148
 The udev daemon and the dynamic files .. 153
 First readonly character’s drivers .. 156
 Second readwrite character’s drivers .. 168
 Third ioctl character’s drivers .. 169
 Loading a driver at boot .. 170
 Conclusion ... 170

 6. Block Drivers and Virtual Filesystem .. 171
 Introduction ... 171
 Structure... 171
 Objectives .. 172
 The GNU/Linux storage stack ... 172
 The I/O layer .. 175
 The I/O scheduler .. 176
 Overview of Linux I/O schedulers ... 177

xiv

 Considerations and choosing a scheduler ... 180
 The block drivers .. 182
 Block Layer components ... 182
 Core operations ... 183
 The virtual file system layer ... 187
 Implement a new filesystem in user/kernel space ... 192
 Communication .. 193
 Conclusion ... 196

 7. USB Drivers and libusb .. 197
 Introduction .. 197
 Structures ... 197
 Objectives .. 198
 USB architecture ... 198
 USB features ... 202
 USB standards and specifications .. 202
 USB 2.0 standard ... 202
 USB 3.2 standard ... 203
 USB 3.2 generation 2 ... 203
 USB 3.2 generation 2x2 ... 203
 Thunderbolt 3 standard ... 203
 USB 4 standard .. 204
 Advantages and disadvantages of USB.. 206
 Linux USB subsystem .. 207
 Types of endpoint .. 210
 USB transport (IN) algorithm: .. 211
 USB transport (OUT) algorithm ... 211
 Linux USB data struct .. 214
 Enumeration .. 220
 Class drivers .. 222
 Gadget drivers .. 224
 Write a USB driver in userspace using the libusb ... 235
 Conclusion ... 241

 8. Network Drivers ... 243
 Introduction ... 243
 Structure... 243
 Objectives .. 244

 xv

 History of the network stack .. 244
 Network architecture ... 245
 Protocols layer... 255
 Network module .. 257
 Network driver loading... 267
 The sk_buff .. 270
 Performance and tuning .. 274
 The DPDK project ... 282
 Conclusion ... 289

 9. Linux Security Modules .. 291
 Introduction ... 291
 Structure ... 291
 Objectives .. 291
 Mandatory access control .. 292
 Anatomy of the usual Linux Security Modules ... 296
 Architecture of a Linux Security Module ... 301
 Develop a custom Linux Security Module ... 307
 Conclusion ... 312

 10. Kernel Memory and DMA ... 313
 Introduction .. 313
 Structure... 314
 Objectives .. 314
 From physical to virtual memory .. 314
 Non-uniform memory access .. 318
 Userspace commands .. 321
 Methods of memory allocation ... 327
 Functions for memory-level operations .. 330
 Accessing memory using a DMA ... 335
 Conclusion ... 346

 11. Navigating Linux Communication Interfaces .. 347
 Introduction .. 347
 Structure... 347
 Objectives .. 347
 2-Wire interface architecture ... 348
 Usage .. 350

xvi

 Serial Peripheral Interface architecture ... 360
 Usage .. 363
 Serial architecture ... 366
 Usage .. 369
 Peripheral Component Interconnect architecture ... 374
 Usage .. 381
 Conclusion ... 384

 12. Process Management ... 385
 Introduction .. 385
 Structure... 385
 Objectives .. 385
 Tasks scheduling ... 386
 GNU/Linux and real-time .. 393
 Kthreads ... 395
 Workqueue .. 397
 Locks... 401
 Conclusion ... 404

 13. Debugging GNU/Linux Kernel and Drivers .. 405
 Introduction .. 405
 Structure... 406
 Objectives .. 406
 GNU/Linux kernel debugging options .. 407
 Magic SysRq key .. 410
 Debugging by printing .. 412
 Dynamic debugging ... 417
 kgdb/kdb kernel debugger .. 419
 KDB .. 420
 KGDB ... 421
 Kernel probes .. 423
 Kprobe ... 423
 KRETPROBE ... 426
 OOPS .. 428
 Profiling ... 432
 Conclusion .. 440

 Index ..441-446

History of the GNU/Linux Kernel 1

Chapter 1
History of the

GNU/Linux Kernel

Introduction
This first chapter describes the origin and the evolution of the functionalities of the Linux
kernel to better understand not only what the kernel is but also the way in which it has
evolved structurally.

Structure
The chapter covers the following topics:

•	 Inspirations
•	 Linux kernel history
•	 Evolutions of the several features by release/milestones
•	 License of the GNU/Linux

Objectives
This chapter is an important preamble to understanding where Linux comes from, its
history, and why we need to study this operating system, which owes its fame in part to
the openness of its code, its robustness, and its performance. At the end of this chapter,
you will have an overview of what the Linux kernel is. Linux Torvald, the inventor of

2 Linux Kernel Programming

Linux, did not invent everything from scratch but was inspired by what existed at the
time, whether he owned it or not. It is, therefore, useful to know these inspirations for a
good understanding.

Inspirations
In the 1960s and 1970s, Unix was an operating system developed at AT&T's Bell Labs. It
was known for its modular design, stability, and efficiency. Unix (often written in capital
letters, UNIX, particularly when it is the official trademark) is an operating system created
by Bell Labs in 1969 as an interactive time-sharing system.

The name Unix is a play on words, combining uniplexed (meaning single or one at a time)
and multics (referring to an earlier operating system project). Unix was developed as a
successor to the Multics operating system.

Ken Thompson and Dennis Ritchie are considered the inventors of Unix.

In 1974, Unix became the first operating system developed in the C language. Linus
Torvalds, the creator of the Linux kernel, was a Unix user during his university days and
was inspired by Unix's concepts of multi-user, multitasking, and resource management
(see Figure 1.1). The following figure shows us a concentric view or onion model of a Unix
system:

Figure 1.1: Onion view of the UNIX system

Unix is often considered to be based on an onion model.

The model proposed by the Unix systems is layered, going from the hardware to the user
via the kernel, which controls it and the software that provides utilities via several kinds
of software. The following figure shows us a vertical view of the onion model:

History of the GNU/Linux Kernel 3

Figure 1.2: Another view of a UNIX system layered view

View of the architecture of a Unix System is similar to an actual Linux in outline.

As we will explore, Linux distributions are numerous, and they inspire each other. With
Unix systems, it was the same because when we talk about Unix systems (for those who
knew them), we talk about IBM AIX, HP UX, Irix, Solaris, UnixWare, Ultrix, Microsoft
Xenix, SCO Unix, Net/OpenBSD, and many others.

All these systems have evolved and contributed to developing the modern systems we
know today in their own way. The following figure shows us the countless versions of
Unix systems that were common at the time and that for the most part, have been replaced
today by the Linux system:

4 Linux Kernel Programming

Figure 1.3: History and dependencies of Unix systems

Many of the commands in 1972's Unix 2nd edition are still used in today's Linux.

Another inspiration was Minix (for mini-UNIX), an educational and experimental
operating system, created by Andrew S. Tanenbaum (also known as AST) in 1984 for students
to dissect a real OS. Indeed, AT&T had banned the use of Unix for educational purposes
and forbids its use for teaching.

MINIX was a microkernel written in the C programming language to reimplement V7.
It was designed for the IBM PC (with 256KB RAM, 360KB 5.25-inch floppy disk). It was
structured in a more modular way than UNIX and is compatible with it from a user point
of view, but completely different from the kernel side.

Its goals were to deliver an open-source, clean design that students can understand, a small
microkernel, the rest of the OS is user processes, and communicate using synchronous

History of the GNU/Linux Kernel 5

message passing. Many of the basic programs, such as cat, grep, ls, make, ..., and the shell
are present and perform the same functions as UNIX MINIX requires 20 MB of hard disk
partition. MINIX is not as efficient as UNIX because it is designed to be readable. The
following figure clearly shows the positioning of controllers in user space and no kernel,
which will be seen by Linux as an inefficient approach in the following figure:

Figure 1.4: Architecture of a microkernel kernel

The kernel is the core part of an operating system; it manages the system resources. It is
like a bridge between the application and the hardware of the computer. In a monolithic
kernel, user services and kernel services are both kept in the same address space.

Linus Torvalds worked on Minix for a period, gaining practical experience in operating
system design. However, he found that Minix had limitations in terms of performance
and features, which motivated him to create his own kernel, which gave birth to the Linux
kernel a few years later. The initial version was crashing after an hour following a heat
problem.

We should not forget one of the latest and important inspirations that made the Linux
kernel what it has become today. This owes its current name to it, namely GNU/Linux,
which derives from the rights of the GPL to which it is attached.

GNU is a free operating system created in 1983 by Richard Stallman (as shown in Figure
1.5), maintained by the GNU Project. GNU covers the concepts and operation of UNIX.
This project already has a kernel called HURD, which is a play on words, as it is intended
to sound like herd (as in a herd of animals) and represents a desire to move away from the
Unix monolithic kernel model. It entered competition with Linux, which overshadowed it.

