
  i

Get Set
Go

Go programming fundamentals,
environment setup, and core concepts

www.bpbonline.com

Amrit Pal Singh

ii 

First Edition 2025

Copyright © BPB Publications, India

ISBN: 978-93-65898-866

All Rights Reserved. No part of this publication may be reproduced,
distributed or transmitted in any form or by any means or stored in a
database or retrieval system, without the prior written permission of
the publisher with the exception to the program listings which may be
entered, stored and executed in a computer system, but they can not
be reproduced by the means of publication, photocopy, recording, or
by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true and correct to the best
of author’s and publisher’s knowledge. The author has made every
effort to ensure the accuracy of these publications, but the publisher
cannot be held responsible for any loss or damage arising from any
information in this book.

All trademarks referred to in the book are acknowledged as properties
of their respective owners but BPB Publications cannot guarantee the
accuracy of this information.

www.bpbonline.com

  iii

Dedicated to
My wife, Dilraj, and my daughter, Jesmyra

iv 

About the Author

Amrit Pal Singh is currently serving as Sr. Director of Cloud
Software at Jubilee TV, based in Bengaluru, India. With a career
spanning over 20 years, he has extensive experience in various
domains. These include high-performance web backend
platforms, cloud services deployment, media middleware, and
firmware development.

Amrit holds a master’s degree in software systems from Birla
Institute of Technology and Science, Pilani. He has authored
patents in the field of media content management.

In addition to his technical roles, Amrit is an active content creator
on YouTube, where he shares insights on technology and software
programming. His areas of interest include product development,
system software and firmware, web-scale cloud computing
system architectures, and ML and AI.

  v

About the Reviewers

v	Shrinath Thube is a seasoned software developer at IBM,
USA, and a technology leader with extensive experience
in cloud, cybersecurity, observability, and AI-driven
automation. He specializes in building scalable and secure
solutions, driving innovations in IBM Cloud, application
performance monitoring (APM), and enterprise security. His
expertise spans microservices architecture, governance and
compliance, container security, and AI-powered automation.

With a strong track record of leading mission-critical
projects, Shrinath has enhanced system reliability, integrated
security frameworks, and optimized cloud-based solutions
for improved performance and visibility. He has worked
extensively with modern cloud technologies, including
Kubernetes, OpenShift, and security, ensuring seamless and
secure deployments.

Beyond technical contributions, Shrinath is passionate about
mentoring, cross-functional collaboration, and driving
innovation in emerging technologies. As a Technology
Advisory Board Member at Avotrix, he provides strategic
insights on AI adoption, cloud security, and observability,
helping organizations navigate technological advancements
and strengthen their security posture. He also serves as an
Industry Expert on the Board of Studies for multiple academic
institutions, shaping curriculum development and bridging
the gap between education and industry needs.

Shaped by a strong academic foundation, Shrinath holds a
master’s degree in electrical engineering from San Jose State
University, USA. He is an active Senior IEEE Member and
IEEE Computer Society Member, contributing to the global
technology community through thought leadership, technical

vi 

publications, and industry collaborations. Committed to
bridging research and real-world applications, he continues to
leverage technology to build secure, scalable, and intelligent
solutions that drive business success.

v	Vishwa is passionate about writing clean, efficient, and
maintainable code and is a strong advocate for best practices
in software engineering, including test-driven development
(TDD), code reviews, and continuous improvement.

Currently, Vishwa is working at Publicis Sapient , where he
is leading the development of cutting-edge microservices
solutions that drive business value and innovation.

Vishwa, thrives on solving complex technical challenges
and enjoys mentoring teams to elevate their skills in Go and
distributed systems. He is committed to helping organizations
harness the full potential of Golang to build scalable, reliable,
and high-performance applications.

  vii

Acknowledgement

I would like to express my sincere gratitude to everyone who
contributed to this book. A special thanks to my family and friends
for their unwavering support and encouragement. Your love and
motivation have been invaluable.

I am very grateful to BPB Publications for their guidance and
expertise in bringing this book to life. Their support was crucial
in navigating the publishing process. Thank you to the reviewers,
technical experts, and editors for your valuable feedback. Your
insights have greatly improved the quality of the book.

Finally, I want to thank the readers for your interest and support.
Thank you to everyone who helped make this book a reality.

viii 

Preface

Go (Golang) is vital in today's software development and is a
modern and efficient language. The book covers essential concepts
for Go programming.

This book has thirteen focused chapters. It covers topics for
understanding Go. We start with an introduction to Go and its
setup. This guides you through setting up your environment.
We then cover data types and control structures. Functions and
error handling are also explained. Working with strings and slices
builds a solid base. You will learn Go's core syntax and features.

Chapters 5 through 7 explore advanced topics. These include
Go reflections and concurrency. Structs, methods, and interfaces
are also covered. These showcase Go's unique capabilities. You
will learn to build concurrent applications. Working with JSON
and HTTP is discussed. Logging and testing are also covered.
The usage of Go for web development and distributed systems
is explained. These show how Go creates real-world solutions.
Finally, we cover generics. An overview of Go for security and
cryptography is also included. You will learn about advancements
and secure coding.

This book is for anyone learning Go. It is for beginners and
experienced developers. It is a portable reference and a guide to
Go's key concepts for students and professionals.

Get Set Go aims to equip readers with knowledge. You will learn
to write clean, efficient and maintainable Go code. You can build
web servers, command-line tools, and distributed systems with
this knowledge. I hope this book is a valuable resource. It will
help you explore Go programming.

Chapter 1: Introduction to Go - This chapter dives into the
fundamentals of Go and explore the historical context behind
its creation. It starts by uncovering the reasons that led to the
development of the language and examines how its design
addresses the challenges of large-scale software engineering. Key

  ix

milestones in Go's evolution are highlighted, showcasing why it
has become a go-to choice for modern software solutions. Along
the way, we will examine the features that set Go apart, such
as simplicity, efficiency, and effectiveness in building scalable
and high-performance applications. Additionally, the chapter
introduces the essential fmt package, demonstrating how it can
be used to format and print output effectively.

Chapter 2: Data Types and Control Structures - In this chapter,
we will explore the core building blocks of Go, data types and
control structures. We will cover Go's basic types—integers,
floats, strings, and booleans—and the concept of zero values. Zero
values are default values assigned to uninitialized variables.

We will also dive into variable declaration methods using var, type
inference, shorthand declarations, and variable scope. Composite
types like arrays, slices, maps, and structs are explained, along
with constants and enumerations using iota.

You will learn to manage program flow with conditional
statements and looping constructs. Finally, we will address type
conversions in Go’s statically typed system. By the end, you
will be well-versed in handling data and controlling program
execution in Go.

Chapter 3: Functions and Error Handling - In Go, functions are a
fundamental component of building any application. They enable
code reusability, modularity, and organization. Understanding
how to declare and use functions is key to writing clean and
maintainable code. This chapter covers the syntax for declaring
functions, different types of parameters, and return values. It
also touches upon advanced concepts like variadic functions,
anonymous functions, closures, and error handling. By mastering
these topics, you will be equipped to write more flexible and
reliable code in Go.

We will also dive into error handling topics like throwing errors,
defining, and handling custom errors.

Chapter 4: Strings and Files - In this chapter, we will delve
into two fundamental aspects of programming in Go: string
manipulation and file handling. This chapter explores Go’s built-

x 

in packages, the strings and os packages. We will discuss essential
string manipulation functions, UTF-8 encoding, and immutable
string behavior. Additionally, we will dive into file and directory
handling, which is essential for managing data storage, creating
files and directories, and handling input and output operations.
Command line arguments will also be covered. It gives us the
flexibility to interact with programs directly from the terminal.
Together, these topics provide a strong foundation for building
powerful applications in Go.

Chapter 5: Go Reflection - Reflection in Go is a powerful feature
that allows developers to inspect and manipulate types and values
at runtime. This capability can make your code more dynamic
and flexible. It enables you to write programs that can adapt to
different types and structures without knowing them at compile
time. In this chapter, we will explore the fundamentals of Go’s
reflect package, which provides the tools necessary for reflection.
We will cover how to extract type information, work with values,
and even modify them programmatically.

Chapter 6: Concurrency - Concurrency is one of Go's most
powerful features that lets us write programs that are efficient
at performing multiple tasks simultaneously. Concurrency in
Go is driven by the lightweight and highly efficient nature of
goroutines. In this chapter, we will delve into Go's concurrency
model, exploring goroutines, channels, and synchronization
mechanisms. Additionally, we will also explore the context
package and understand how this package helps manage
goroutines.

Chapter 7: Structs, Methods, and Interfaces - Structs are a
foundational feature in Go that allow developers to group related
data into cohesive units. Unlike arrays and slices, which store
elements of a single type, structs can hold fields of differing
types. In this chapter, we will explore how to define, instantiate,
and use structs in Go. We will delve into advanced features like
struct embedding for creating composite structures, overriding
embedded fields, and defining methods to attach behavior to
structs, enabling more organized and maintainable code. We will

  xi

also cover interfaces, their implementation, type assertion and
type switch statement.

Chapter 8: Working with JSON and HTTP - In modern web
development, handling data efficiently and building robust HTTP
servers are fundamental skills. Go's standard library provides
powerful tools to achieve this. The net/http package creates web
servers and the encoding/json package seamlessly works with
JSON data. This chapter dives into these essential components,
offering a comprehensive guide to building web applications
in Go. From encoding and decoding JSON to implementing
middleware and context handling, you will learn how to create
efficient, and maintainable web servers that cater to dynamic
client requirements.

Chapter 9: Logging and Testing - In the world of software
development, logging and testing are indispensable tools that
ensure the reliability and maintainability of applications. Logging
provides insights into the behavior of a program, helping
developers diagnose issues and understand application flow.
Testing, on the other hand, verifies that code behaves as expected,
preventing bugs and regressions.

In this chapter, we will explore the logging capabilities provided
by Go, including the use of the log package and the newer slog
package for structured logging. We will also delve into Go's testing
framework, covering how to write unit tests, run benchmarks,
and effectively debug your code.

Chapter 10: Go in Web Development - Web development with
Go has gained traction due to its simplicity, performance, and
concurrency support. Unlike many other languages, Go offers a
robust standard library with built-in packages like net/http for
web servers and html/template for rendering dynamic content.
This reduces the need for external dependencies. Go's strong
typing and compile-time checks help catch errors early. The
lightweight goroutines enable efficient handling of thousands of
concurrent requests. Additionally, Go’s cross-compilation support
ensures seamless deployment across platforms.

xii 

In this chapter, we will explore how to build web applications
using Go, covering essential concepts such as building a
simple web server, templating, handling forms and user input,
integrating with popular web frameworks, and implementing
basic authentication and session management.

Chapter 11: Go in Distributed Systems - In modern software
development, distributed systems have become a cornerstone for
building scalable and resilient applications. Go, with its simplicity
and efficiency, is well-suited for developing such systems. This
chapter delves into the use of Go in distributed systems, focusing
on microservices, the context packages, and integrating with
Apache Kafka using the Sarama library. We will also explore
implementing distributed locks using Redis.

Chapter 12: Generics - In this chapter, we will explore one of Go's
most anticipated features—generics. Generics were introduced in
Go 1.18. Generics enable us to write reusable and flexible code
by making functions and data structures to work with any data
type while maintaining type safety. This chapter provides a
guide to the syntax and structure of generics, from simple type
parameters to advanced constraints. You will learn how to create
generic functions and types, and use constraints to restrict type
parameters.

Chapter 13: Go for Security and Cryptography - Security is a
crucial aspect of software development, and Go provides robust
tools to help developers secure their applications. In this chapter,
we will explore how to secure your Go applications using the
crypto package and best practices for writing secure Go code. We
will cover the fundamentals of cryptography in Go, delve into
hashing and encryption, learn how to generate secure random
numbers, and understand how to handle user authentication and
authorization with JWT.

  xiii

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can
upgrade to the eBook version at www.bpbonline.com and as
a print book customer, you are entitled to a discount on the
eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of
free technical articles, sign up for a range of free newsletters,
and receive exclusive discounts and offers on BPB books
and eBooks.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/zt1vbph
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Get-Set-Go.
In case there’s an update to the code, it will be updated on the
existing GitHub repository.

We have code bundles from our rich catalogue of books and
videos available at https://github.com/bpbpublications. Check
them out!

Errata
We take immense pride in our work at BPB Publications and
follow best practices to ensure the accuracy of our content to
provide with an indulging reading experience to our subscribers.
Our readers are our mirrors, and we use their inputs to reflect
and improve upon human errors, if any, that may have occurred
during the publishing processes involved. To let us maintain the
quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated
by the BPB Publications’ Family.

xiv 

Piracy
If you come across any illegal copies of our works in any form
on the internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are
interested in either writing or contributing to a book, please
visit www.bpbonline.com. We have worked with thousands
of developers and tech professionals, just like you, to help
them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book,
why not leave a review on the site that you purchased it from?
Potential readers can then see and use your unbiased opinion
to make purchase decisions. We at BPB can understand what
you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit
www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:
https://discord.bpbonline.com

  xv

Table of Contents

 1. Introduction to Go ..1
 Introduction ..1
 Structure ..1
 Objectives ..2
 Introduction to Go and its history ...2
 Genesis of Go ..2
 Why Go? ...3
 Go's impact and adoption ...4
 Key features of Go ...4
 Simplicity and clean syntax ..4
 Statically typed with type inference4
	 Efficient	concurrency	model ..5
 Garbage collection ...5
 Fast compilation and execution5
 Robust standard library ..5
 Cross-platform and easy deployment6
 Error handling with explicit errors6
 Strong community and ecosystem6
 Setting up the Go environment ..6
 Installing Golang ..7
 Choosing an IDE ..9
 Introduction to Go modules ...9
 Creating a new module ...10
 Writing and running your first Go program10
 Format output using fmt package10
 Basic printing functions ...11
 Formatting with verbs ..12
 String formatting with Sprintf ...13
 Printing to other destinations ..13
 Conclusion ..14

xvi 

 2. Data Types and Control Structures15
 Introduction ..15
 Structure ..15
 Objectives ..16
 Basic data types ..16
 Zero values ..16
 Declaring and initializing variables17
 The var keyword ...17
 Type inference with var ...18
 Shorthand declaration ...18
 Declaring multiple variables ..19
 Variable scope ...19
 Package-level scope ...20
 Local scope ..20
 Composite data types ..20
 Arrays ...21
 Slices ...21
 Maps ...22
 Structs ..22
 Constants ...23
 Enumerations ...23
 Conditional statements ...24
 If-else ...24
 Switch ...25
 Looping constructs ..25
 Traditional for loop ...25
 While-like for loop ...26
 Range ..26
 Type conversions ...27
 Conclusion ..28

 3. Functions and Error Handling ..29
 Introduction ..29
 Structure ..29

  xvii

 Objectives ..30
 Function declaration and syntax ...30
 Parameters and return values ..31
 Variadic functions ..33
 Anonymous functions and closures34
 First-class and higher-order functions35
 Defer, panic, and recover ..36
 Defer ...36
 Panic and recover ..36
 Error handling ..37
 Basic error handling ...37
 Creating custom errors ...38
 Checking error types ...39
 Conclusion ..40

 4. Strings and Files ..41
 Introduction ..41
 Structure ..41
 Objectives ..41
 String manipulation ...42
 Understanding strings ...42
 Immutable nature ..42
 UTF-8 encoding ..43
 Basic string operations ...44
 Additional operations ...45
	 Checking	prefix	and	suffix ...45
 Converting case ...46
 Trimming whitespace and other characters...................46
 Basic file operations ...46
	 Opening	and	closing	files ...46
	 Reading	and	writing	files ...47
	 Handling	directories	and	file	paths48
 Command-line arguments ..51
 Conclusion ..52

xviii 

 5. Go Reflection ...53
 Introduction ..53
 Structure ..53
 Objectives ..53
 Introduction to reflection ..54
	 The	reflect	package ..54
 Type and value introspection ...54
 Kinds in reflection ..55
 Modifying values with reflection ..56
 Example: Modifying basic types ...57
	 Example:	Modifying	struct	fields58
 Example: Modifying slice elements60
 Conclusion ..61

 6. Concurrency ...63
 Introduction ..63
 Structure ..63
 Objectives ..63
 Introduction to concurrency, goroutines, and channels ...64
 Goroutine ..64
 Characteristics of goroutines ...65
 Channels ...65
 Buffered versus unbuffered channels67
	 Unbuffered	channel ...67
	 Buffered	channel ...69
	 Key	differences	between	buffered	and	unbuffered	channels 70
 Select statement ..71
 Synchronization ...72
 sync.Mutex ...73
 sync.WaitGroup ..74
 sync.Once ...75
 Managing concurrency with context package76
 Introduction to context ...77
 Creating a base context ...77

  xix

 context.WithCancel ..77
 context.WithTimeout ..78
 context.WithValue ..79
 Conclusion ..80

 7. Structs, Methods, and Interfaces ..81
 Introduction ..81
 Structure ..81
 Objectives ..82
 Structs ..82
	 Defining	structs ..83
 Instantiating and using structs ..84
 Using zero values ..85
 Ways to initialize a struct ...85
	 Using	struct	literalusing	named	fields85
	 Using	struct	literal	using	positional	fields85
 Using the new keyword ...86
 Using a struct pointer with the & operator86
 Immutable structs in Go ...86
	 Structs	with	embedded	fields ..87
	 Overriding	embedded	fields ...87
 Methods ...88
	 Defining	methods	on	structs ..88
 Method receivers: Value vs. pointer....................................89
 Value receivers ..89
 Pointer receivers ..89
 Method chaining ...90
 Interfaces ...91
	 Defining	and	implementing	interfaces91
 Interface composition ..92
 Type assertion ...92
 Type switch ...93
 Practical applications ..93
 Conclusion ..94

xx 

 8. Working with JSON and HTTP ...95
 Introduction ..95
 Structure ..95
 Objectives ..96
 Introduction to JSON in Go ..96
 Encoding and decoding JSON ...96
 Encoding JSON ..97
 Tips for encoding JSON ..97
 Decoding JSON ..99
 Error scenarios and types ..100
 Tips for decoding JSON ..102
 Building a simple web server ...103
 Handling JSON in HTTP requests and responses104
 Handling JSON requests ..104
 Sending JSON responses ..105
 Routing and handling HTTP requests106
 Basic routing with query parameters106
	 Handling	different	HTTP	methods107
 URL path variables ...108
	 Serving	static	files ...109
 Middleware and context in HTTP servers109
 Implementing middleware ..109
 Using context in HTTP requests111
 Conclusion .. 112
 References ... 112

 9. Logging and Testing ... 113
 Introduction .. 113
 Structure .. 113
 Objectives .. 114
 Using the log package ... 114
 Basic logging ...114
	 Adding	flags	for	more	information115
	 Using	custom	prefixes ..115

  xxi

	 Logging	to	a	buffer ..116
	 Logging	to	a	file ..117
 Structured logging with slog .. 117
 JSON logging made easy ..118
 Adding contextual information ..119
 Including source information ...119
 Filtering logs with levels ..120
 Go’s testing framework ..121
 Writing unit tests ...122
 Executing tests and understanding output123
 Measuring test coverage ...123
 Benchmarking Go code ...124
 Conclusion ..125

 10. Go in Web Development ...127
 Introduction ..127
 Structure ..127
 Objectives ..128
 Introduction to Go web development128
 Best practices for Go web development129
 Building a basic web server with Go129
 Using Go templates for dynamic content130
 Handling forms and user input ...132
 Integrating with web frameworks135
 Basic authentication and session management137
 Basic authentication ...137
 Session management ...138
 Conclusion ..140

 11. Go in Distributed Systems ..141
 Introduction ..141
 Structure ..141
 Objectives ..141
 Introduction to distributed systems and microservices .142

xxii 

 Using the context package for request-scoped data142
 Interaction with Kafka...143
 Distributed lock with Redis ..147
 Conclusion ..149

 12. Generics ..151
 Introduction ..151
 Structure ..151
 Objectives ..151
 Introduction to generics ..152
 Generics syntax ..152
 Generic functions ...153
 Generic types ..155
 Generic structs ..155
 Generic interfaces ...157
 Custom constraints ...159
 Conclusion ..160

 13. Go for Security and Cryptography161
 Introduction ..161
 Structure ..161
 Objectives ..161
 Introduction to cryptography in Go162
 Hashing and encryption ...162
 Hashing with SHA-256 ..162
 Encryption with AES ...163
 Generating secure random numbers164
 Handling user authentication and authorization............165
 Implementing authentication ...165
 Implementing authorization ...170
 Conclusion ..170

 Index ...171-176

Introduction to Go  1

Chapter 1

Introduction to
Go

Introduction
This chapter dives into the fundamentals of Go and explores the
historical context behind its creation. It starts by uncovering the
reasons that led to the development of the language and examines
how its design addresses the challenges of large-scale software
engineering. Key milestones in Go's evolution are highlighted,
showcasing why it has become a go-to choice for modern software
solutions. Along the way, we will examine the features that set Go
apart, such as simplicity, efficiency, and effectiveness in building
scalable and high-performance applications. Additionally, the
chapter introduces the essential fmt package, demonstrating how
it can be used to format and print output effectively.

Structure
This chapter covers the following topics:

•	 Introduction to Go and its history

•	 Setting up the Go environment

•	 Introduction to Go modules

•	 Writing and running your first Go program

•	 Format output using fmt package

2  Get Set Go

Objectives
By the end of this chapter, you will understand the core principles
behind Go's creation and the historical context that shaped its
development. You will learn why Go was designed for simplicity,
scalability, and performance, and how its features address the
needs of modern software engineering. You will also explore
Go's unique advantages in areas like concurrency, memory
management, and cross-platform development. Additionally, you
will be able to set up a Go development environment and gain
insight into Go’s key milestones and growing ecosystem.

Introduction to Go and its history
Go, often referred to as Golang, is a statically typed, compiled
programming language. It is designed for simplicity, efficiency,
and reliability. It was created by Robert Griesemer, Rob Pike, and
Ken Thompson at Google and was first announced to the public in
November 2009. The language was born out of a need to address the
challenges of software development at scale, particularly within
Google's vast infrastructure. Golang merges the performance of C
with the simplicity and productivity of high-level languages like
Python and Ruby.

Genesis of Go
The inception of Go can be traced back to late 2007 when the
creators, frustrated with the complexity and inefficiency of
existing languages, decided to design a new language. They
wanted to create a language that could better meet the demands of
modern software development. They aimed to create a language
that combined the performance and safety of statically typed
languages with the speed of dynamic languages.

Here are the key milestones of Go development:

Introduction to Go  3

Figure 1.1: Key milestones of Go development

•	 2009: Go was officially announced and released as an
open-source project. This release included a compiler,
tools, and a standard library, setting the stage for
community involvement and rapid evolution.

•	 2012: Go 1.0, the language's first stable version was
released in 2012. It established a stable foundation for
Go's syntax and semantics. It also ensured backward
compatibility for future versions.

•	 2015: The release of Go 1.5 was significant as it included
a complete overhaul of the runtime. It also removed the
dependency on C and made Go a self-hosting language.

•	 2019: Go celebrated its 10th anniversary, with a thriving
community. Go received widespread adoption in various
industries, from cloud computing to web development
and beyond. According to Go developer survey 2024 H2
results (https://go.dev/blog/survey/2024-h2-results), Go
continues to enjoy strong developer satisfaction (93%),
with ease of development and user-friendly APIs being
key strength on major cloud platforms.

Why Go?
Go shines in scenarios where scalability, simplicity, and
performance are key. It has become a popular choice for building
modern web services, microservices, DevOps tools, and cloud-
native applications. Go's strong support for concurrency makes it

4  Get Set Go

an excellent choice for applications requiring parallel processing.
Its efficient memory usage helps in building high-performance
servers and networked systems.

Go's impact and adoption
With a growing ecosystem and strong community support, Go
has carved out a niche for itself as a language. It is particularly
favoured in the following areas:

•	 Cloud services: Companies like Google, Docker, and
Kubernetes use Go to build scalable and efficient cloud
services.

•	 Web development: Go's performance and simplicity
make it an excellent choice for web servers and APIs.

•	 DevOps: Tools like Terraform and Prometheus, which are
essential in the DevOps ecosystem, are written in Go.

Key features of Go
Go has several features that make it an attractive choice for modern
software development. We will take a look at them in this section.

Simplicity and clean syntax
Go is simple and has concise syntax. Go was designed to be easy
to learn and read. The language avoids complex abstractions like
inheritance, operator overloading, and implicit type conversion,
promoting clarity in code.

Statically typed with type inference
Go is a statically typed language. This means variable types
are checked at compile time. This provides more safety and
preventing many types of bugs.

However, Go also supports type inference, allowing the compiler
to automatically infer the type of variables based on the values
assigned to them.
Let us look at this example:
var a int = 10
b := 20 // type inferred as int

Introduction to Go  5

Here, a is explicitly defined as an integer, while b is automatically
inferred as an integer.

Efficient concurrency model
Go provides built-in support for concurrent programming through
goroutines and channels. Goroutines are lightweight threads,
managed by the Go runtime, and consume very little memory.
This allows us to run thousands of concurrent tasks in parallel.
Goroutines work in tandem with channels, which enable safe
communication between them. This concurrency model simplifies
the process of writing concurrent programs. It also avoids common
issues like deadlocks and race conditions. This makes it easier to run
multiple tasks simultaneously and leverage multi-core processors.

Goroutines and channels enable efficient concurrency, as
evidenced by benchmarks (Golang vs. other languages, https://
benchmarksgame-team.pages.debian.net/benchmarksgame/
fastest/go.html).

Garbage collection
Go does automatic garbage collection. This means the Go runtime
takes care of memory allocation and deallocation. Unlike C and
C++, this relieves developers of the need to manually manage
memory. Go’s garbage collector is highly efficient and does not
impact performance significantly. The garbage collection is
optimized for latency and scalability. It is crucial for building web
servers, microservices, and large-scale systems.

Fast compilation and execution
Unlike interpreted languages like Python and Ruby, Go is
compiled. It converts code directly into machine code before
execution. This results in faster execution and better performance.
Go’s compiler compiles large codebases quickly, even in projects
with thousands of source files. The fast compilation and execution
make Go ideal for scenarios where performance is critical.

Robust standard library
Go comes with an extensive standard library that simplifies
common tasks, such as working with files, handling network

