Fundamentals of
Software
Architecture

Practical guide to building resilient software and
high-performance systems

Craig Risi

www.bpbonline.com

ii

First Edition 2025
Copyright © BPB Publications, India
ISBN: 978-93-65898-118

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true and correct to the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
the publisher cannot be held responsible for any loss or damage arising from any information
in this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete E E

BPB Publications Catalogue
Scan the QR Code: E

www.bpbonline.com

iii

Dedicated to

My wife, Jacqui Risi

iv

About the Author

A man of many talents, but no sense of how to use them. Craig Risi could be out changing
the world but would prefer to make software instead. Probably the reason why Nick Fury
refused to take his calls. He possesses a passion for software design, but more importantly
software quality and designing systems that can achieve this in a technically diverse and
constantly evolving tech world.

Craig has over 20 years of experience across the development, testing, and management
disciplines in various software industries, but he still feels he learns something new every
day. It is the continued change and evolution of the software industry that motivates him
to keep learning and finding ways to improve. More than just playing with tech though,
it's people that make software come together — and so Craig believes in developing people
and empowering them to make a success out of the software they build.

When not playing with software he can often be found spending time with family, writing,
designing board games, or running long distances for no apparent reason. He is also a
massive fan of comic books and Star Wars, so if you see him concentrating intensely, he is
probably just trying to use the force.

Craig is also the writer of several books and writes regular articles on his blog sites and
various other tech sites around the world. He is also an international speaker on a wide
range of different software development topics, though these experiences only make him
even more excited about the future of the industry in South Africa.

About the Reviewer

Kartoue Mady Demdah, Ph.D., is a data scientist at Olameter Inc. with seven years of
experience in data science, machine learning, and statistics. He earned his Ph.D. in
Mathematics from the University of Rennes I and the University of Pisa.

Over the years, he has developed expertise in computer vision, graph neural networks,
time series analysis, and natural language processing (NLP). In addition to his Ph.D.,
he holds a Professional Certificate in Digital Transformation from MIT, covering Al, IoT,
cloud computing, blockchain, and cybersecurity. His technical proficiency spans Python,
SQL, TensorFlow, PyTorch, AWS, and Azure.

Beyond his technical skills, Kartoue is deeply committed to mentorship and community
engagement. He actively participates in Al hackathons, promotes data philanthropy, and
shares his expertise to support the growth of the Al community.

vi

Acknowledgement

Thank you for taking the time to purchase this book and hopefully it will give you as much
enjoyment into reading it as it did for me in writing it. The role of a software architect
is one of continued learning, so no doubt even after reading this one, you will continue
reading even more insightful books on different topics and continue to grow on these
topics. But, for giving me so much of your time to read this — I do appreciate it.

Special thanks also go out to BPB Publications for the support and incredible editing that
makes my writing come across a lot better than it really is.

This book would not have been possible without the many people in my career who have
helped me understand many of the concepts in this book more clearly. So, I want to thank
those many unnamed mentors, managers and colleagues who have worked with me over
the years and helped me to learn many different aspects of software architecture and
software development.

However, most importantly - to my loving wife — who has sacrificed the time with me in
helping me put this book together. Without her support, writing this book would not have
been possible and she has been the backbone in my career that has helped me to thrive. I
am incredibly grateful to have someone who supports me the way she does.

vii

Preface

This book is for all people in the software space keen to know a little bit more about what
software architects do, and their importance in the software development life-cycle. The
book looks at both the technical aspects of software architecture and the softer side of
skills to present a well-rounded view of all the crucial skills required for people to become
software architects.

The book does not require in-depth technical knowledge to be of value, though there will
be some technical models and patterns discussed and why they are effective, so a basic
understanding of software principles is required.

This book lays out the fundamentals of what software architecture is, what skills are
required to be a skilled software architect, and some of the best practices to follow for
companies to leverage software architecture the most in their companies. Too many
companies place too little emphasis on the importance of proper architectural design in
their software processes and through this book, we hope to teach the reader about its
importance and how proper software design can have a marked improvement on the
resultant developed software.

Below is an outline of all the chapters:

Chapter 1: Defining Software Architecture - This foundational chapter lays the
groundwork for understanding the significance of software architecture. In this chapter,
we explain why software architecture is so important to the overall development process
of the software, look at the different high-level attributes of design that matter, and briefly
explain the consequence of poor software architecture to further explain the importance
of the practice.

Chapter 2: The Role of a Software Architect - In this chapter, we delve into the multifaceted
role of a software architect, outlining key responsibilities and expectations. We explore the
pivotal relationship between architects and development teams, emphasizing effective
communication and collaboration for successful project outcomes. The chapter delves into
the architect's crucial role in aligning technical decisions with overarching business goals,
and how their choices can significantly impact the organization.

Chapter 3: Architectural Properties - This chapter looks at the different properties that form
the foundation of good architectural design and represent all the things architects need

viii

to consider in order to design effective applications that meet the needs of performance,
maintainability and long-term resilience.

Chapter 4: The Importance of Modularity - Before we look at the different architectural
styles and patterns, we will take some time to look at modularity in software design and
why it is important to be aware of these different principles and to build modularity
into all aspects of software design. This means ensuring each module has well-defined
responsibilities and interacts with other modules through well-defined interfaces.

Chapter 5: Architectural Styles - In this chapter we talk about what makes an architectural
style versus the different patterns that exist. For each style, we will break down how it
works, look at the different benefits it offers, and what type of applications it would be
best for.

Chapter 6: Architectural Patterns - In this chapter we dive into more detail of the different
architectural patterns that can be considered, shedding light on their distinct characteristics
and applications. The chapter navigates through practical examples to illustrate the
decision-making process when choosing patterns, looking at the different pros and cons
of each pattern and when they might be best applied in different situations.

Chapter 7: Component Architecture - After looking at architectural patterns, it is
important to now delve into software components and how they also play a role in
software architecture, but at a smaller level. This includes component identification and
the breaking down of a system into modular and reusable elements. We will also have a
look at concepts of coupling and cohesion and look at the interdependence and internal
unity of components that impact system design.

Chapter 8: Architecting for Performance - This chapter provides an insightful examination
of assessing software patterns for performance and designing components to operate
optimally. It begins by exploring methodologies for measuring the performance of code,
offering a comprehensive overview of tools and techniques used to gauge efficiency and
identify potential bottlenecks.

Chapter 9: Architecting for Security - This chapter underscores the paramount importance
of security in software architecture, unraveling its critical role in safeguarding systems
from evolving threats. Delving into secure design patterns, the chapter explores tried-and-
true methodologies for integrating security into the very fabric of software architecture.
Moreover, the chapter emphasizes the significance of secure coding practices, guiding
developers in crafting robust, resilient code. Through an exploration of secure coding
principles, readers learn to implement defensive coding techniques that stand as a
formidable line of defense against malicious exploits.

ix

Chapter 10: Design and Presentation - This chapter looks at design principles that create
robust and scalable software systems. It delves into the foundations of design thinking in
software architecture, emphasizing a holistic approach that aligns technological decisions
with user needs and business objectives. Readers are guided through a spectrum of design
principles, exploring concepts such as modularity, reusability, and scalability, essential for
crafting architectures that stand the test of time.

The chapter takes a closer look at best practices for the presentation layer, focusing on
creating user interfaces that are intuitive, responsive, and user-friendly. Through real-
world examples, readers gain practical insights into optimizing the user experience while
adhering to design principles.

Chapter 11: Evolutionary Architecture - This chapter delves into the core principles of
Evolutionary Architecture, emphasizing the importance of flexibility and adaptability.
This chapter will be split up into sections of why change is necessary, some architectural
strategies for dealing with change, and how teams can best update and evolve their design
without interfering with system operation or incurring high levels of redevelopment costs.

Technically, this will look at designing for independence and isolation, a look at modular
design principles but then also how best to navigate and handle tech debt in teams and
apply them technically. A significant portion of the chapter is dedicated to continuous
integration in supporting evolving architectures. Readers learn how automated integration
processes can streamline development workflows, enabling architects to implement
changes smoothly while maintaining system integrity.

Chapter 12: Soft Skills for Software Architects - No architect can thrive no their technical
skills alone and needs to work with development teams, various product stakeholders,
clients and other architects to build an effective software solution. That is why there is a
chapter set aside to look at soft skills that are critical for architects to master to be able to
effectively lead others and teams toward executing a successful strategy.

In this chapter, we will start looking at the core principles of an architect's role which
require them to take a leadership role in companies, and then unpacking specific skills that
will help them to fulfil this leadership need effectively.

Chapter 13: Writing Technical Requirements - Writing technical requirements for
architects is a critical aspect of the project planning process. By carefully defining the
functional, performance, and design criteria, architects can ensure that their designs meet
the needs of stakeholders while adhering to industry standards and regulations. Effective
communication and documentation are essential for maintaining clarity and facilitating
collaboration throughout the project lifecycle.

Chapter 14: Development Practices - Software is built by development teams and so it is
important in this book that we make an effort to discuss development practices and have a
detailed understanding of the different development practices across the software industry
and the impact they have on delivery in different ways, This is vital so that software
architects can work with the various engineering teams on the correct methodologies and
practices that will suit their vision for the software.

Through this chapter, we will look at different at how different Agile, DevOps, and CI/
CD methodologies influence architectural decisions, and provide strategies for architects
to thrive in this dynamic environment.

Chapter 15: Architecture as Engineering - This chapter explores the invaluable
contributions of architecture to the broader field of software engineering. In this chapter,
readers will gain a holistic understanding of architecture's role in shaping software
engineering practices in a company and ensuring the success of complex projects.

This chapter is important because architects need to align in how software design and
ensure they design software that allows for the software engineering processes discussed
in the previous chapter. This includes looking at different design techniques that can help
teams achieve repeatable results and lasting success - largely built on the foundation of a
design that works effectively across the team and its skillsets

Importantly this chapter will also discuss metrics. Metrics provides architects with the
ability to quantitatively assess and improve the quality of their designs. Readers learn how
to leverage metrics to evaluate performance, maintainability, and other crucial aspects,
enabling informed decision-making throughout the software development lifecycle.

Chapter 16: Testing in Software Architecture - This chapter focuses on the critical aspect
of ensuring testability in software architecture, illuminating the importance of building
systems that are robustly and effectively testable. The chapter delves into unit testing for
architectural components, providing architects with a nuanced understanding of how to
design and implement tests for individual components.

This chapter serves as a comprehensive guide for architects, offering practical strategies
and insights to embed testability into software architecture, ensuring the reliability and
quality of the final product.

Chapter 17: Current and Future Trends in Software - The chapter focuses on emerging
technologies in software architecture, from blockchain to edge computing, Al and ML and
providing architects with a forward-looking perspective on how these innovations might
influence architectural decision-making. We will also discuss how AI /ML can inform and

xi

enhance architectural choices, from automated decision support to predictive analytics,
through data-driven design techniques.

Anticipating and adapting to industry changes is a critical aspect of software architecture
and so thus cater will also have a look at tips that architects can leverage to be better
prepared for these industry changes and how to identify and adapt to them quicker.

Chapter 18: Synthesizing Architectural Principles - In this chapter we revisit the core
themes that have underscored each chapter, emphasizing the interconnectedness of
architectural decisions with project success, business impact, and user satisfaction. The
importance of adaptability and agility in the face of evolving technologies and industry
landscapes becomes evident, as architects are not just designers but strategic navigators
steering organizations toward success.

The concluding chapter serves as a call to action, encouraging architects to continually
refine their craft and embrace lifelong learning as the speed of software innovation
continues to rapidly escalate and makes the role of software architecture and design
increasingly more critical.

xii

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/tzhaooe

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Fundamentals-of-Software-Architecture.

In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical articles,

sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

xiii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Xiv

Table of Contents

Prologue 1
1. Defining Software Architecture 3
INtrOdUCHON. ...t 3
SEIUCTUTE....cviiiiii e 4
ODJECHIVES ...t s 4
Structural elements ..o 4
Architectural patterns and Stylesccoccecinicirinicnnceee s 4
Architectural deciSion MaKingceeccueeecirenicuninieieneereereeeneeeesseee s 5
Architecture in software development lifecycleccooveuenieericencenecennenens 8
CONCIUSION.....ouiiiiiiiicc s 11

2. The Role of a Software Architect 13
INtrOdUCHON. ... 13
SEUCHUTE. ...t 13
ODJECHIVES ...t s 14
Re-visiting Codeburg..........cccoviiiiiiiiiiiiiic s 14
Epilogue: Architect's triumph..........ccoieiiicirnicceceeeecee s 15

Key aspects of the software architect's rolecocoeeuerieuenicericcercercceenees 15
Relationship with development teams...........cccoceururieuenicenicericcrcerceeeenens 17

Types of software architects in an eNtErPrisecccevwcueerecreurereeerrereenreneereereenen. 19
CONCIUSION.....ouiiiiiiiic s 21

3. Architectural Properties 23
INErOdUCHON. ... 23
SEUCEUTE....cviiiiiii s 23
ODJECHIVES ...t s 24
PerfOrmancecocouvuiuiiiiiiiiiiii s 24
TRYOUGNPUL ... 24

LATEHICY vttt 25

X0

SCALADILILY ..o s 25
Reliability .. .c.cueueuieiiiiiccccc e 26
AVATIADITTEY oo 27
SECUTILY .vvvtteii s 28
AULRENEICATION ...t 28
AULROTIZALION ..o 29
Data encryprioni.......c.cecccveveicieieieiciciiitsie e 31
Maintainability........ccooveiiiiiic e 32
MOGUIATTEY oo 32
TESEADIIILY ..t 33
DOCUMEIEALION ...ttt 34
FIEXADIIEY oot 35
ACCESSIDILILY «.ovviii e 36
INteroperabilityccovoviiuiiiiiieiici e 37
POTtability ...cvcvviiiicicicic s 38
CONCIUSION. ...t 40
4. The Importance of Modularity .. 41
INErOAUCHON. ..ot 41
SHUCKUT®. ...ttt 41
ODJECHIVES ... 42
Importance of MOdUIATityccoviiiiiii e 42
Aspects Of MOAUIATIEYcuvveveveiiiiiiiiiicicec e 44
Maint@inabilitycceveveieiiiiiiiicccec 44
SCALADILILY ..o s 45
REUSADIITEY ..o 48
Flexibility and adaptabilityyccccoovrmiienieiiiiiiicceseee 50
Understandabilityccooviirrieieieiiiniiiiiicccce s 53

Parallel developmentccvueeieiviciiiiiiiciieeicieiescce e 57
Encapsulation of COMPIEXItYcccoveurumeieiiiciiiiiiiiicceeees 60
Achieving modularity in code deSign...........c.coovvviviicceieinieiiiciiiceeee e 64

Code OFGANIZALION.oeeeviieieieiccce e 65

xvi

Documentation ... 66
TOSHINIG v 67
Version Control ... 68
ErrOr-Randlingcccoovvereiiininiiiiiiiiccicese e 68
Removing the legacy factor.........cccocviiuiiiniiiniiniciicc s 68
LoCalized CHANGEScovviiiiiicicicieiceie 69
Clear TNEETTACESvvvvviiiiicicieiee et 70
ENCAPSULALION ..ot 71
Library 0r COMPONEILE TEUSE.........cuvveveveieieiiiiicicicieieie ettt 73
ISOIAFION ... 74
ADSEFACHON ...t 75
Error iSO1ation ..o 76
INteroperabilitycccooviiiiiicieicc e 77
CONCIUSION.....ouiiiiiiii e s 79
5. Architectural Styles...... 81
INErOAUCHON. ... 81
SELUCHUTE....viiiiiiciic s 81
ODJECHIVES ..o 82
The difference between styles and patternscccceuecuviciniiricinicinicincsicneees 82
Layered architeCturecccuciciiiiciiiciiiiscccc s 84
Client-server architeCtUreocevceeueeeucuriieieiecieteeeeete et saeaens 86
Factors to consider for client-server deploymentccccovvvevevniiiccccnssinnn. 88
Microservices architeCture ..o 89
Considerations to deploy microservices architeCtureccovvvvcicciiiininiciias 90
Service-oriented architeCture............cccoccueiuiiiiniciiiiiiicc 91
Event-driven architeCture....... ..o 94
Component-based architeCturecccceuiuviciiiiiiciniciiicccc e 97
Space-based architeCtureccoccuiuiciiiiiiiciic s 100
Repository or data-centric architecture...........ococeucciniciniiniciniciiccccccene 103
Hexagonal or ports and adapters architecture............ccccoceuecuricinirincnicininininin. 106

Event-driven microservices arcChit@CtUTEooueeeeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 109

Pipeline-based architecture...........cccoceucuiiiriiiiiiiniiiicccce s 112
Clean ATCRILECEUTE........c.evieeieieicieiecieiecie et 115
Benefits of Clean ArchiteCtUre............ccocoveueueueieisiiiiiiicicicice e 117
CONCIUSION.....ouiiiiiiiic s 118
6. Architectural Patterns. 119
INErOAUCHON. ... 119
SEUCHUTE....viiiiiici e 120
ODJECHIVES ...t 120
Model-View-Controller pattern..........ccoceeriiniiiiiiccciecee e 120
Model-View-ViewMOodel................ccccvvviiiiiiiiiicicieiesisieicicccieie s 123
Repository Pattern........co 125
Publish-Subscribe Patterncccuiiciiiiiniciiciiiciccice e 127
SINgleton Patternccveviiiiiicc s 130
Adapter Patternccoviiiiiicc e 132
Decorator PatteIn ... 135
Observer Pattern.........ccccciiiiiiiiiiiiiiiii s 138
Testability of architectural patternscccoeueiiricciniciniiniciiciccceaee 141
Choosing styles for different SCENATIOScccuiueiriiriiiriciniiriiicecececees 142
CONCIUSION.....ouiiiiiiiic s 144
7. Component Architecture ceesaesneaeneneseanes 145
INErOAUCHON. ... 145
SEUCHUTE. ...t 147
ODJECHIVES .ot 147
Component identificationccoeeueueiniiiiiiii 147
Decomposing the SYStemc.cccicuiiiiiiiiiiiiiiccic e 148
Establishing communication protocols............cccccuviiiinicininininicinicceeceaes 149
Dependency managementccoourecueueininininiicceiee e 151
CONESION ...ttt 152
FUunctional CONESION.............cccviiiiiiiiiiiiciiiciiiiiici s 153

Sequential CONESIONcccvviciiiiiiiiiiiiiiiiciiic s 154

xX0Uiii

Communication CONESIONcevuviviiiuiucieieisisisiiieicccieie e 154
Procedutal CONESION.............cccovueueeiieiiieiciiiicicice e 155
TetpPOTal CONESIONe.vvvvviiiiiiicicteieie et 156
LOGICAL CONBSTON ...t 157
Coincidental CONESIONcuvuvueveieiiiiiiiicicieiee e 158
COUPLING .ot 159
Data COUPLINGvvvvviiiiiiiiiciceie e 160
CONEIOL COUPIING..o.vvviiiiiiiciiieicciett e 161
SEAMP COUPLING oot 162
Externial COUPIINGcoovvuiuimiieieiiiiiiiiiiiccctee s 163
COMMON COUPLING .. 164
CONtNnt COUPIINGvvovviiiiiiieieieieieieiecce e 165
Guidelines for coupling and cORESIONccccuviciiiiiiiniciniiiccc s 166
High cohesion, Iow cOUPUNG.........cccviuriiiiiiiniiiiiiiciniciccic e 168
Single Responsibility Principle...........cccooiiiiinininiiicciceeccccceee 169
ENcapsulation.........cccciiiiiicciec s 170
CONCIUSION. ...t 172
8. Architecting for Performance.... . . . vereresnerenensaeaeaeanas 173
INErOAUCHON. ..o 173
SHUCKUT®. ...t 174
ODJECHIVES .ot 175
Designing for optimization............ccoviiiiiiii e 175
Measuring your existing performance.............ccoooeeerenininininiiccicee e 175
Identify the appropriate MEITiCSc.covvvveveururieieieieiciicccce e 176
MeASUTE TIGRE ... 176
Application performance metricsccoeveurriiiiiiiiiiniin e 177
Server performance MetriCs ..o 177
Overall performance mMetricscoovviriiiiiiiiciein e 178
Measure both prod and test envIrONMENES..........ccovvveucueieieieisiiiciiiceeeeeeas 179

Try to integrate performance tests into Your pipeline.............ccooeoevevvevevecccnnnnnnn. 180

Challenges to code OptimizZatioN...........cccccuiuriciniiciiiiniiiicc s 180

Understanding the [evel Of QAiNccuvvvveveieiiiiiiiicicicieiesceccccee e 181
Finding the DAlanceccoceeueieieiiiiiiiiicicicieecctcccee e 181
Keeping the rest of the system in MiNdccceeeveiviiiiccecceiiccce e, 181
Third-party iNEeGrAtIONc.ccovveevireieieieiciciiccce e 181
Dealing with the data..............cccevviviiiiiiiiciciiiieisicicce e 182
Understanding how your compiler WOrks............ccveueeieeiiieiiiiiiicieieisisieiesesenes 182
Optimizing your deSigncccceeueieiniiiniiicccnee e 183
Designing for algorithms and data StrUCLUTEScccvvuvvvveveeiciiiiiiiciccee, 183
Designing for SCAlabilityoovvvviiiiiiiicieieieieicicicccee e 184
Concurrency and paralleliSmccoovveveeniiiiiiiiiicce e 185
CACRING. ..ottt 187
Minimizing I/ O OPeration ...t 188
Optimizing YOUT COe......ouiiiiiiiiiiiicccc e 190
Calculating true code OptimMiZAIONccuvuvveveieiiiiiciiciciciee e 190
Using the appropriate algOTTHNIMcouvvvveveieiiiiiiiciciciceieeeiccccce e 191
Optimize your code fOr MemMOTYcccouvviruriiiniiiniiiiiccce e 192
Problems wWith fUNCHONS............coceueveieiiiiiiiiiicieieieee e 193
OPHIMIZING LOOPS c..vvviieieiiiiiictcteie e 193
Data structure OpHMIZALION.cvvvivieiiieiiieieieieiccceee e 194
Binary search or sequential SEAYCHccvueveieieieiciiiiiiiiieieiecieieiccce e 194
OPLIMIZING ATTAYSvvvvvevieiiiieteieeet e 194
USING OPETALOTS ...ovvviivvveieieietctctctete e 195

Using tables versus recalculating..............cocovveeuveesisiiieiiicicieeeeeiesccnns 195

Using smaller data types is faster than 1arger 0Nes............ccocvveeveeeverirernnnnns 196

Use powers of two for multidimensional Arrays...............cccoevvcivviccccinnn. 196

Data type considerationscovvveerenieinisieiiiiiiiieseeisiesesscseee s 196
Testing for performance ... 197
Performance testing Process........ocwueeievviiciuireieisieiiiisiscicee e 197
Identify your testing environmentccweevevevevevieeeeieesieiisissceees e, 198
Identify the performance acceptance Criteri...........ccoovvvvvivviviiviivcccneieieininn, 198

Plan and design performance tests.........owwveviviiiiiieeessiiiiiiiccceee i, 199

Configuring the test environmMentoccevvveveveiiieeieieeisieiicceeee e, 199

XX

Implement test AeSiGN.........ccvueveveiiviieiiiiiicieieicectce e 200

RUTL B FESES ..ot 200
Analyze, tune, And 1e1eSt.............cccvucucuiiiiiiiiiiiiiiiccic 200
Example performance test CASEScowvmrieieviviiiiiinieieieieieiiiissccceee s 201

The right time to run performance testscccoocurieiririciniciiieinesicrecee. 201
CONCIUSION. ...t 202
9. Architecting for Security rerereeneneneasreneaeanas 203
INErOAUCHON. ...cevvi e 203
SHUCKUT®.....eei s 204
ODJECHIVES ..t 204
Threat MOAENGccuiiiiiiiiii e 204
Assessing vulnerabilities.oovvviiciininiic e 206
Secuire design PALLEINS.ccvcviiuiicieieieieieiciicce s 208
APLSCCUTTEY ottt 209
Container and cloud SECUTTEYc.cvvvvviririicieieiiieicicie e 211
CONEATNEY SECUTIEY w.vovvvvrriiiiictciee s 211

ClOUA SECUTTEY .t 213
BIOCKCHAIN SECUTTEY....ovveveieiicieiieieiicc et 214
2610 Trust ATCRILECHUTE.coveveeeeeieieiiiiccecicee e 216
Authentication and authorization ..., 218
AULRENEICATION ...t 218
AULROTIZALION ..ot 218
Secure COMMUNICALION.ccoiiiieieietctcic s 219
Input validation and sanitization...........cccceeeeiiiiiiicce e 221
Secure data StOTAZE........ccvvrvriiiiciciei s 223
S€CUTE COINEG ..uvviiiiiiiii s 224
Secure DevOPS........c.oviiiiiiii s 226
SHift=left SECUTTHY ..cuvuveveveieieiiiciiccctce s 227
Continuous secUrity MONIOTING.....oovvvvivvevereriieierieiiiieieisie e, 227
Secure configuration MANAZEMENTccvvveveveieieiiiiiiiicieiesie e 228

Collaborative security CUKUTEovveurveieieiiiiiiiciciceee e 228

Continuous improvement and feedbackcoovveveniniiiiiiiccccieinn, 229
SeCUTItY tESHINEG ..ovvveveicicec s 229
Incident reporting and fOrensics ... 231
CONCIUSION ...ttt 234

10. Design and Presentation crereesnesenneneanenes 235
INErOAUCHON. ..o 235
SHUCKUT®. ...t 236
ODJECHIVES ...t 236
Design thinKing ..o 236
Single Responsibility Principle...........cccooviiiinniniiiicccccccccee 238
Open/Closed Principle ... esaesees 239

Liskov Substitution PYinciplecooovvviiiieniniciiiiiiciceeceescce e 240
Interface Segregation PYINCIPIecccovviuiueicieieiciiiiiccee e 241
Dependency Inversion PYIRCIPIe.............ccceueieisieiiiiiiiiiicicieecieiesccece e 242
Don’t Repeat YOUTSEf..........ccvvivieieiiiiiiiiiicicicieicisicccciciee e 243
Composition 0Ver IMNEITHANICE.covvueueueieieisiiieiicieie e 244
LATW Of DEIELET ..ottt 245
Presentation layer best practiCes............cooiiirieininiiiniiicccec 246
Ensuring testability in deSign.......c.ccccooviviiiiiiiii 249
CONCIUSION ...t 250

11. Evolutionary Architecture........... rerereeneseneasaeneraanas 251
INErOAUCHON. ..ot 251
SHUCKUT®. ...t s 251
ODJECHIVES ..t 252
Need fOr Change..........ccovciiiiiiciic e 252

Changing DUSINESS MECASccvvvveviiuiicieieieisisiietcieie e 252
Handling changes in reqUIrements.............ccoeueeuiciniciiiniciniciniesiesiesceesseeaens 254
Plan for technical debt and refactoringcccceeevvvvvvviiccenisiniiiiiisccceesn, 256
Strategies for evolving architeCtures ... 256
Designing for independernce................cooueeeueeesisiiiciiiiciceeciciessce e 256

IS01ated tESHING ...ceevvviiiiiccc s 260

xxii

Challenges in isolated teStNGccovvrureieiiiiieiiiiiiceee e 261

CI for evolving architeCturescccccuviciiiniciniciiiicccce s 262
Set up proactive monitoring to support changecccccceeeciuvicinicininiccinicnnne. 265
Dealing with tech debt and maintenance.............cccceecuviiricinicinicincniciccee, 268
CONCIUSION ...t 270
12. Soft Skills for Software Architects vereeeeneresensaeneraanas 271
INErOAUCHON. ..ot 271
SHUCKUT®. ...ttt s 271
ODJECHIVES .ot 272
Importance of SOft SKIllSccoveviiiiiiiiccc e 272
The role of an architect in leading teamsccccuccuviciriiriciniciiicicsicccee 273
Skills for managing stakeholders...........cccccuviiiiinicininiiiniciiccc s 274
EMPAtRY SKIllSovvviiiiiicicieiciccc s 275
Team management tips for software Architects.............cocovvvvvicceeesieiciiicicnnns 276
Practical communication sKillscccoovvrmneniiiiiiiiiiceeecccce e 277
Tips for communicating to bUSiness OULCOMES.ovvrivivvrcrrieeisieisiisiiccicaenenns 278
Tips for communicating With Clients............cccovvvveeeiniiiiiiiccceee s 280
Conducting productive meetings as an architectcccceceuecricinicincniccinicnnne. 281
Negotiation SKillS.........cociiiiriiiiiiiiicc e 282
Mentoring SKillS.........coviiiiiiiiic e 284
Presentation SKills..........cooviiiiicininic 285
CONCIUSION ...t 287
13. Writing Technical Requirements . 289
INErOAUCHON. ..o 289
SHUCKUT®. ..ottt 289
ODJECHIVES ..t 290
A revisit to COdebUIG......crimiiiiiiic e 290
Technical reqUITEMENtS.........c.cc.cuciiiiiiic e 291
Stakeholder identification and analysiscccccuviriiiricnicininicicccces 293

Regulatory and compliance requirements............cococeueueueirinininiiccceneesceeeenees 294

Considerations for technical YequUITEIMENts............cccoovvvurvvueeeiciiiiiiiiccee e, 295
Performance requiremMents............ccceeveiniiiciicinnncce s 296
Integration and interoperability..............ccoovrmeeeieiiiiiiiieeeeee e 297
User interface and USer eXPErieniCe..........coowviiivvviiiueucieieisisisiisicicicieseissiesesissaais 298
Development and deploymentccoocvevenniniiiiiiiinieseciciiscce e 298
TOSEITIG v.vvvevevereeitete et 298
Documentation and SUPPOTtcccoevvvereueueeieisisiiiiiiiccee e 298
Project MANAZEMENtcovvviiiiiiiiiiieicicitsc e 299
Design constraints for consideration...........c.c.cocoeecrnnninniiciceces 299
Technical CONSHATNES.........c.ovvviviiiiiicieieieieic e 300
BUSINESS CONSEIAINES.....vvviiiiieieieie e 300
Operational CONSHAINES........oovvveviveieieieiiiiiciiee s 301
User and UX CONSEIAINEScovvviiuriiieieieieiiiiiiiccecces s 301
Environmental CONSErAINES...........oveivivieieiiiiieieieiiictccee e 301
Interoperability CONSEIAINEScucuvveveieiiiiiiicicieeee e 302
Technical standards and guidelines............cccoccueiuricinicininincinicicsccceee 302
Requirements Maintenancecooeeueveevieiiiiieieieeeicceee e 305
Establish ownership and 1esponsibility............ccccovvveeeeniiiiiiiccceieeinan, 305
Implement version CONEIOL...........oovvvvveiiviieieieiiiiiiiiiceee 305
Schedule regular reviews and UPAALESccvwevevvivviiiicicicieieieicicicies 305
Automate wherever PoSSibIe.............cvvvvvieiiviiicicicieieieicicicccce e 306

Foster a culture of documentation and requirements............ccccoevvveveeininnnn. 306

Use clear and consistent formatting............cooveeeeensieieiiiinneeseesisisecenns 306

Ensure accessibility and ase 0f USE..........c.ccccevcvevciucuereeieiiiiiiiicciceeee, 307

Link requirements 0 COAe.........ovvvivviiiimiriciiiiiciiiicccee e 307

Solicit feedback and iMProve..............cccovvvvcureeeieisiiiiiiccce s 307
Archive obsolete TeqUITEIMENES..........ccuvuiueiiieiiiiiiiicieeieeietccceie e 307
Integrate with project management to0lscccoovveueeeeiiiiiiiccceeieinnn, 308

Provide training and 1€SOUTCES.............ccoveevereieieiiiiiiiiieieeeieiiscceee e, 308

COMCIUSION .ttt ettt ettt et e eeeate e s e aaeeseateesessteessaseessenssessssseesesnteesessesssnnaes 308

XX10

14. Development Practices ceesaesneaeneneaeanes 309
INErOAUCHON. ..o 309
SHUCKUT®. ...t 309
ODJECHIVES ..t 310
Getting involved early in the design process...........cccccuvicuviriniinicinicinceicinicnnes 310

Aligning development practices to design teCHNIGQUEScccooevvuvueueeieieiiiirinnnes 311
Structuring teams for better delivery............covvvevniviniiiiccicicceeeeccies 313
Implementing effective team SEYUCLUTEScvveveveveiiiiiiiicieeeieeiicce e 315
Assess the effectiveness of software delivery teams..............ccccocovevvivvivccccinencnn 316
Metrics and indicators to help drive improvementc.cocovvvvvvvenieieiirininncnns 318
CI/CD process for reliable software deliveryccccoocuviviciinicinicininicnnicnnes 318
Setup version CONtrol SYSIEMcvumevrivieiiiiiiiiiicieieeicieitccce s 319
AULOMALE DUTIAS ... 319
AULOMALE FESEING o.vvvviviiiiieieic e 319
Static cOAe ANALYSIS.........cvovvieiecieieieieicicicte s 320
Continuous deployment SEHUP............covvvveurereeisiiieiiiiiccee e 320
CI/CD pipeling CrEAtionNcc.coccuviiuviuciciiniiisiiciciisicisie s 320
Monitoring and [0QINGceveveveviiiiiiiieieieieieiiiicccte e 320
SecUrity TNEEGIALIONvveveveeieiiieieieieicc e 321
Ensuring testability in the process...........ccccocviviciiinicinicinicicccceccees 321
Building quality gates into the development process.............cccccocvvevvivivivicicucucunan. 321
Implement quality Qatescccoovvvvveiiviiiieieiiiiiciccce e 322
Example CI/CD pipeline with quality gates............ccccoocviviocnicincniocinicnnn. 324
Assessing NFRs in the development processcoceeeeieveveviivcueessisiisisincnns 327
Example of integrating NFR assessments in CI/CD pipeline..............c.ccc...... 329
Determining when software is ready for release...........ccccccocvuvcunirincinicinicininin. 332
Criteria definitioNccvvueueueueieieiciiiiicccce e 332
Functional cOMPIEtenesscceueiviiieiiiiiiiiicieicieicicicccce e 332
Non-functional requirementsccoovvvreueeieieiiiiiiieesseee e 333
QUALTEY GALES ..o s 333

Testing and VAlIAALIONccovviviurieieieiciiiccce s 333

AUtomated teSHNGcvvvveveieiiiiiiiicicee e 334

XX0

Business and manual teStNg..........coccvveeieieicieiiiiceeeeieiesssccie e 334
Performance teSting..........ouvvueeeiniiiiiiiiieieeieieict 335
SECUTIEY EESHTLG w.vvviviiiieieieieecec s 335
Compliance and docUmentation.............cococeueeesieieieiiiicieeeeieese e 335
COMPLIATICE ..o e 336
DOCUMENEALION ..ot 336
Deployment and MONTEOTINGccvvvviiriieirieinisisiciiccceiee e 336
Deployment 1eAdINess..............coovvvvviucucueieieisieiiiiicicees e 336
Monitoring the software for improved delivery............ccccocvcunicinciincinicininin. 337
Establish key performance indicators..............cocevveveviimnieeeiciiiiiisccceeeeies 337

A guide to effective eStimAtionccvueueieieiiiiiiiiiicicieieeeee s 338
Choose an estimation teCHNIGUEccevevevcieiiiiiiicieeecicicce e, 338

Factors to consider in eSHIMALION.ccccvveveveieieiiiiiiiceceeeccee e 339
Iterative and incremental eSHMALION.cueveveveviviiiiiieiceciiicceee e, 340

T00ls ANA tECANIGUEScveveeeviieieicicicitcce s 340
Monitor and Adjust.............ccovvvviicceiiiiccce 340
Achieving more AcCurate eStiMAtescocovvvveruereieieisieiiiiicieeeeeesssae 341
CONCIUSION ...t 342
15. Architecture as Engineering...... . . . o 343
INErOAUCHON. ..ot 343
SHUCKUT®. ... 344
ODJECHIVES ..t 344
Assessing engineering maturity ... 344
WOTKING Of CIMMI ..ottt s 345
Benefits of USing CMMI.........covvvvviviiiiiiiicicieisisisieiiccicee e 346
Assessing the maturity of @ teAMcoevuvveveviiiiiiciciiicecccce e 346
Software engineering with architectural principles.............ccccccvcvvvviniiiciccccnnan. 349
Key architectural principles............ooovvveeeieieiiiiiiiicciceeiesisccee e 349
Ensuring repeatable results............cccooooiviiiiiinii 351
Clear success conditions for easier developmentccvveeeieiviiviiccucieieininnnn, 354

Designing frameworks that allow for easier executioncccevvevivivcicucuann. 356

XXU1

Standardized CONfIQUIALIONcvvrveueieieieiiiiicicece s 359
Deploying code into productioncceeeeeieinieieiiineciseciesesesscce s 362
Secure access controls for deployment pipelinescocooveveeeeiiricicccnnnnnnn, 364
Have clear abstraction IAYerscccoovvvvvcumuenieieieiiiiiiiceeeessissscee e 365
Emerging engineering practices............cocoeiioiiiiiiiiiiiiic 368
INfrastruCture As COAe............oovvueueurinieiiiiiciiiiicieieiee et 368
Benefits of IaC i1 engineering ProCesses............ccouwvwreeeieieisiiiiseneieieinsssnsnns 368
CONEATNETIZALION ..o 370
Benefits of containerizationoceeeueveieieicviiiiincieseeieisesscce e 371

GIEOPS ottt 373
Benefits 0f GItOPSvvuvueueieieieiiiiiiiicicicie s 374

EdGe COMPULING.....vvvviiiiiiiicieieiceetc s 376
Benefits of edge COMPULINGccovoviviurueieieiciciciicccicee e 378

CHAOS @NGINELYING ...t 379
Benefits of Chaos engiNeering.........c.cocwueueueieieieieviiiiiiieieisieieieiisisscceeeis s 381
OBSEIVADILIEY ...t s 383
Metrics in software engineering..........cccocoeeuvveiiininiiccicicecc e 387
BeSt PIACHICES ...ttt 389
CONCIUSION ...t 390
16. Testing in Software Architecture v saeaens 391
INErOAUCHON. ..o 391
SHUCKUT®. ...t 391
ODJECHIVES ..t 392
Designing for testabilitycccocovioiiiiiiiiiccc e 392
MOAUIAY ACSIGN ... 392
Clear and Simple iNterfaACeScccovvviiiucueieisisiiiiicce e 392
Dependency inJectioncvevevieiiiiiiiicieicisisisiicciee e 393
L0gging and MONTIOTINGcccoveueueieieiiiiiiiiiicieieieie et 393
Deterministic DERAVIOTc.cvueveveieiiiiiicicieieieisisiescciiee e 393
Error handling and 1eporting.............ccovveceeeisisiiveiiiiiicicsecieiessccce e 394

Automated testing SUPPOTTccovvvivirrucieieieieiiiiticcce s 394

Configuration for teSHNG........ovvvviiiiiiiiiicicieiese e 394
DOCUMENEALION ...ttt 394
Mocking and simMulAtionccoovveveeininiiiiiiicccce e 395
Benefits of designing for testabilityccocovereiiiciiiiiiiiceeicicice e 395
Designing APIs for testability..........cccoovriiiiniiiiniiicce 396
Design with clear, consistent CONtIACts.........oooummniiniviiiieeeeiciiiiiicce e 396
Idempotent and stateless OPerations...........cwveeeeieieiiiicicnesieieiisisisccee e 396
Well-defined input and OULPUEccveveveiiiiiiieeeciee s 396
Use dependencyy iNJectioncovvvrueueueieieiiiiiiiiiciciciesis s 397
Test hooks and simulated envIrONMENts...........cccovvveviviiiiiiicceeeeeecceines 397
Enable easy mocking and stubbingc.ccccoevvvvvviviiicicnciciiiiiccceee, 397
Support for asynchronous OPErations..........ccvvwveveeieisieisiiiiicicieeisessesesscceesenns 398
Rate limiting and throttling...........ccccevvvvviiiirecinieiciciicccee e 398
Design for failtire teStINGcvuvveveviiiiiiiicicieieieieisii e 399
Testability in designing front-endscccccoovviiiiiiiiie, 399
Component-based ArchiteCturecoovvueueveieisieiiiiiiccce e 399
Separation Of COMCOINS.uviviiiieieieieieiiiiccce e 400
State MANAZEMENEcoveviviiieiiieieieict et 400
Testable UL elements.........ccovvovicucucueieieieieiiiicciciee e 400
Dependency inJeCtion.cvvveeiiiiiiiiiicieicssisiecccse e 401
Event handling and asynchronous operationsccceeeeeieieiivivccncueeeiesnnnnn, 401
CSS ANA SEYLING vt 401
ACCESSIDILIEY FESEING ...evevvvviicicicicce s 402
Testability in 1eSPONSTVE AESIGN........cuvveveveveiiiiiiiciiieieieieieisciciee s 402
Understanding wWhHere t0 teSt............ccvvueueivieiiiiiiiiciciceieesieicsccccee e 403
Levels Of tESHIGvvvviiiicicicieicie ettt 403
Test Aesign teCHNIGUEScvovviuiicieieieieieictcccc s 407
Black box testing teChNIGUES.............ccvueurueieieieiciiiiicicicieee e 407
White box testing teCHIIGUES..............ccvevivuiuiicieieieiciiiiccice s 408
Experience based testing teChNIqUes.cccoovvvvcereeieieiiiiiiiiciccceein, 409
Hybrid testing teChNIGUEScovevveiurieicieieiciciicccee e 410

Choosing the 1ight teCHNIGUEccovvviuiecieieieieisiciicce e 410

xXxviii

Test-driven developmentccovviiiiiininiiic e 411
THe TDD PYOCESS ...ucucueueueieieiiieiiiicicicseieisieie sttt 411
Benefits 0f TDD........c.couoviiiiiiieieiciciciiiitccectce s 412
Challenges 0f TDD.........cccccveiiiiniiiiiiiicicicee s 413
TDD DeSt PYACHICES c....vvviiiiiiiiiicicieieie et 413
UNTE FESEIIG w.vviviviiieveieieietec e 414

Unit testing teCHNIQUEScvuvueuveeieieieiiiiiicicicee s 415
Uit teSHNG t0O0IS.....vvvviiiiiiiicicieiee e 415
Best practices for Unit teSHNG.........ccovvueueueveieiiiiiciiiicee e 416

Test data managemMentcccevvveiiiiiciii e 417
Types Of test AALAc.cucveveveviiiiiiciciec s 418
Test AAEA SOUTCEScueevvieieiiiiicicicteie e 418
Designing test AAtaccvueveieieieiiiiiiiiiciciciceeise 419
Test data management SHYAEGIES............c.cvvevviucueueieieieiiiiiicccee s 419
Dynamic and randomized data generationccccovvveeeicieiinininccciesisinn, 420

Test environments and data privacy ... 421
Types of test eNVITONIMENEScvurueueieieieiiiiiccee e 421
Considering privacy in the teSHNg SPACEc.covveveviirrrrieieieieiiiiiiicicee e, 423

Performance teStingcocovuiirrieininiiiccc s 426
Key objectives of performance teSHngcovvvevvieiiiiiiiceeiciciiiiecceee e, 426
Types of performance teSHMNGccvreeieieiiiiiiiiiieieieeieieccc s 426
Performance testing Process........ocwueeieiiicieeieisieieiisiiiccee e 428
Common metrics in performance teStingcouuvvvvrveeeieiniiniiincceeesnns 429

SeCUTItY tESHINEG ..ovvvvicicic s 430
Objectives Of SECUTTHY tESHTLGcuvurvivereieieieiiiiiiciieee e 430
Types of SECUTTEY LESHITLGvvvveiiiicicieieieieieictcccce e 431
SeCUTILY tESHTLG PTOCESS....ocveviviiiveieieieieicicctctetee et 433
Best practices for SeCUrity teSHINGccovvururreieiniiiiiiiiciiecieeeieiescce e 434

Automated testing infrastructure ..o 435
Key components of automated testing infrastructure..............cccocovccuvvicvninininnnes 435

Test automation t00lS............ceeevvvieiiieieieieiiiiiicice e 436

TESt SCHIPES c.vvvvvetcriiictcte et 436

CISYSEEMIS vttt 436

Test eNVITONIMENES.........cvoveveieieiciiiiieie et 436

Test data MANAZEIENLEc.ovueveveieieiiiiiiiccee e 437

Version control SYSEEMIS.........c.cvvveveveveueuiiiiiiiieieieieecse e 437
Reporting and analytics t00IS............ccouvveveeieieiiiiiiiieccseiccce e, 437

Test OTCHESHIALION.cvvevviiiiicicicieie ettt 437

Service VIrtUALIZALIONocveveveeiiiiiicieieietc s 437
INfrastructure As COAe ..ottt 438

Best practices for automated testing infrastruCture..........ocoeevevvvvvevccceceieiniennn, 438
Automated testing infrastructure challenges.............cocoevevvieveiciiicvesieiiiiiiiinnns 439
Designing a test automation frameworkccocoevvvvvvceeiciniiiinicccceeen, 440
Architecture of the test automation framework............ccccovvvvveeeeeiiiiiinnnns 441
Components of the frametork..........coccveeveieieieiiiiiiiceeciicccceee e, 441

Test logging and MONItOTING...........coviiriiiiiiccc e 443
TeSt L0GQING cvveviviiiiireieieietetcet et 443
Test MONTEOTING cevvvevvvveierercniitete et 444
Example workflow for logging and monitoringccceevevevvvevivivivcecueesininnnn. 445
CONCIUSION ...t 446
17. Current and Future Trends in Software... S 447
INErOAUCHON. ..ot 447
SHUCKUT®. ... 448
ODJECHIVES ..t 448
Emerging technologies in software architecture............ccccoeuvieiniicinicininiccinicnnne. 448
Cloud COMPULING ..ot 448
Artificial intelligence and ML in the cloud.............ccccveeieiiiciciiiiceeciciiinn 450
Serverless COMPULINGcuvveveivieieieieieieiciiccs s 450
Cloud-native applications and MiCrOSEYVICES..........cocvvvrrrrerereieieieiiiiiicicieiesieiies 450
Cloud security and COMPIIANCEc.ccvvveueueieisieiiiiiiccice e 451
Sustainability and green cloUd................ccccovvvvvvininiiiiiiiiccce e 451
Industry-specific CLOUAS.covueueveieiiiiiiiiciceiee e 452

Quantum computing in the ClOUd.............ccovvvvveneeiniiiiiiiiccce e 452

xXxx

Al-driven cloud management and automationc.ccccceeevevvvivceneeieiiiininnnns 453
5G and cloud iNteGrAtiONccceveveveviiiiiiiiiiiieeie et 453
BIOCKCHAIN ..ottt 453
Applications of DIOCKCHAINccuvuvivieiiiiiiiiicicceecc e 454
Virtual reality and the MetAVETSe............ccvevevviviiiiiiicicicieisieieiiccccee e 454
VRS 10l i1 the TEtAVETSE.........vveveeicieieieieiiicice e 456
EdGe COMPULING.....vvviiiiiiicicieieiceiestce s 456
Key features of edge COMPULINGcoovvrvrrrmeieieiiiiiiiiceeee 456
Working of edge COMPULING............ccveveieviiiiiiieiciciciiiiiccce s 457
Example use cases for edge COMPULING...........ccovvvevimvieeeiiiiiiiiiccicieieeii, 457
Edge vs. cloud COMPULINGocoovvvviiiiricieieieicicicccicee e 458
Machine learning and artificial intelligencecocevvveieieveivccnnsieieiiiinnnns 458
ATIficial iNtelligence...........c.ovvveiiiucicieisieieicictcccce e 458
Machine eArNingccevvivieveiiiicicieieieieicicccce s 458
Machine 1earning pipeline............ccovvvvieieiiiiiicieieisisisiiiiiicceeeeeesessan 460

Al and ML CRAIIENGESccovovvieiicicieieieisiiiiticiccieie et 461
Designing software for a global market............ccccooovriinniniis 461
BeSt PIACHICES ...ttt 461
Performance optimization for global ACCESScccvvvvvvvuvmeieiciiiiiiiiiccei, 462
BeSt PrACHICES ..ottt 463
User experience and USADIIIEYcccvveveieieieiiiiiiicicicicieiesisiccccecee e 463
BeSt PIACHICES ..ottt 463
Legal and compliance consSiderationsccowweeeiivoiicreeisieiiiisiscceeesinns 464
BeSt PYACHICES ..ottt 464
Scalable TNfraAStYUCHUTEcovoviiiiicicieieiecicc s 464
BeSt PrACHICES ..ot 464
Documentation and SUPPOTtccoevvvecueueieieisisiiiiiiccciee e 464
BeSt PIACHICES ..ottt 465
Continuous localization UPAALES.............cceueveieieiiveiiiiiiiceecec e 465
BeSt PYACHICES ..ot 465
AI/ML’s impact on architectural decision-making...........cccccecoeuriuruveuricciriciniununnn. 465

Data-driven architecture design...........oovvueueueueiniiieiiiiiiiieiceecieicisecce e 466

TPACE ..o 466
Al-Ariven design PAtLINScccovvoviucveueieieieiiiititcctee s 466
TPACE ..o 466
Infrastructure and resource allocation deciSionNs.............ccccocvvvvivivcccciiiiiciiinicinas 467
TPACE oo 467
Security and privacy considerationscovvvveesieiiiiiiiiceesssiesescccenenes 467
TPACE ..o 467
Model lifecycle managementocveeevnieiniiiicceeeesieseccceee s 468
TPACE ..o 468
Ethical Al considerations in architeCture............coovvevvcvvceeiciiiiiincccieeeen, 469
TPACE ..o 469
Scalability and high availability..............ccccovvviirnenniiiiiiiiccce s 469
TPACE ..o 469
Adaptation and building future-fit softwareccccceeviiiiiiis 470
Embrace continuous learning and skill development.............c.cccccovvvvvvvvennininnnn, 470
Design for scalability and flexibilityccccvvvveiiiiiiiceeciciicccee e 470
Leverage automation and Al-driven decision-makingc.cccocevvvvvvueeeninnnnn. 471
Adopt secutity-first ArCHIECHUTEcucueveveveieiiiiiiicciceee s 471
Focus on cloud and edge integration............ccceveeevevevivicucneieisieiiiissccceesin, 472
Architect for future technology integrationcceeeeeeeieveiicneesieieieiesncnns 472
Foster collaboration ACY0SS tEAMScccvveurueueieieieiiiiiiiceie e 473
Prioritize user-centric and inclusive deSignccovvvevreeieieiiiiiiiiccieeieiin, 473
Building feedback I0OPScceviiiiiiiicicicc e 474
User feedDaCk [00PS.........cucuvveveieiiiiiiiiiiicicieieiccicitcccce s 474
System and performance monitoring feedback l00ps............cccccvvveeeiviiciccnnnnnn, 475
Al and ML feedback [00PSccoovvurururueininiiiiiiiiiicicieieis i 475
Business metrics and analytics feedback 100PS.............ccccvvvvveiciniiiiiicciciciciiina, 476
Developer and team feedback [00PScccvueveeiviciciiiiicieesiciciiiscccee e 476
Customer support feedback l00pscccvueuevevieiciciiiiiicsecicisce e 477
Security feedback [00PScovvrueueueieieiciiiiiiccce e 477

COMCIUSION .ttt ettt ettt et e eeeate e s e aaeeseateesessteessaseessenssessssseesesnteesessesssnnaes 478

xxx11

18. Synthesizing Architectural Principles..... crereesnesenneaeanenes 479
INErOAUCHON. ..o 479
Alast return to Codeburgoovviiiiiiii e 479
SHUCKUT®. ...t s 480
Overview of the DOOKccccuiiiiiiiiiciiic s 480
Making a great software architect.............ccccvveueiuriccinicininiciiciccccccne 481
The importance of software architecturecccccvieivirincinicinicinciicccne 482

The consequence Of POOY AESIGN..........cuevevvveviviiiiiiieieieieiiiiiiccee s 483
Embracing lifelong [arning...............cccooveeveeniniivoiiiiiceecieiesssccee s 483
Driving software delivery growth and innoVAtIONcceevevevevivirececieieieieinan, 483
CONCIUSION ...t 484
APPENAIX crttieeertititititntneese e s s st nen s s s e s 485
BOOKS ...ttt 485
Foundational DOOKS..............coveueuiueiiisiiiiiiiiicicieicee et 485
Modern architecture and best PractiCes..............cocovvecueeieeieiiieiiiceeeieieiisesincnns 486
Patterns and SHYIEScoovviuruiieieiciciicicccee 487
Domain-specific and specialized................cvvueveeiievciciiiiicieeiciiiiicccee e 487
Practical and case StUAIES.............cccveveveviiiiiiiicieieiciciicce 487
Agile and architecture i1 CONEXEovvueueivieiiiiiiiiciccieee e 488
BOTUS oottt 488
Important blogs and Websites ... 489
Tools and frameWOrKScceuriiiiiiici e 492
Design and modeling t00ISc.cocovvvecucurieisisiiiiiiiiciciccse e 492
Documentation to0lScceweeivieiiiiiiiiicieieeeeiec e 493
Architecture decision t00IScouvueueeeieiniiiiiiiiccceee s 493
Prototyping and design DalidAtION.cccvvvvveieieieiiiiiiiceece e 494
Cloud and infrastructiure t00lS.............cocoveurueueieisieiiiiiiiiicice e 494
Collaboration t0OIS...........ccceeueueieieieiiiiiiiicicce e 495
Performance and reliability t00IS............cccocovrrueeieieiciiiiicicee e 496
Code analysis and quality t00IS.............cocveuvuieniiiiiiiiiicee e 496

Architectural frametworks.ccovovvuecreieiniiiiiiiicccee e 496

xXxXx1iii

GLOSSATY ..ot 497
A s 497
B 497
e 498
Do 498
E e 498
F e 498
G s 499
H oo 499
Lo 499
K s 499
L 499
Moo 500
N e 500
O s 500
R 500
OO 501
e 501
U o 501
s 501
WV s 501
Y s 502
Z e 502

Index ..503-522

Prologue

Once upon a time, in the bustling kingdom of Codeburg, there lived a group of talented engineers and
developers who toiled day and night to build magnificent software structures that would stand the test
of time. Amidst the lines of code and the hum of servers, there emerged a figure known as the Software
Architect, a wise and visionary leader with the ability to shape the very foundations of the digital realm.

In the heart of Codeburg, there was a great castle known as The Repository, where the kingdom's most
critical software projects were guarded. The Software Architect, a seasoned guardian of The Repository,
was tasked with designing the blueprint for these projects, ensuring they were robust, scalable, and
adaptable to the ever-changing winds of technology.

As the sun rose over Codeburg, casting its light upon the kingdom, the Software Architect embarked on
a quest to understand the needs of the kingdom's citizens: developers, project managers, and even the
elusive users. With a map of requirements in hand, the architect set out to build structures that not only
met the immediate demands but also anticipated the challenges that lay ahead.

On this journey, the Software Architect encountered various challenges: dragons of technical debt,
treacherous swamps of conflicting requirements, and the labyrinthine maze of legacy code. Yet, armed
with the sword of architectural patterns and the shield of modular design, our protagonist persevered.

Architectural patterns were like spells in the architect’s magical repertoire, enabling the creation of
robust fortresses against bugs and vulnerabilities. Each line of code was carefully woven into the fabric
of the architecture, forming a tapestry that told the story of both the present and the future.

In the kingdom of Codeburg, collaboration was key, and the Software Architect became a maestro
orchestrating the symphony of developers. Meetings were not mere gatherings but strategic councils,
where decisions were made with foresight, and everyone had a role to play in the grand design.

2 Fundamentals of Software Architecture

As the Software Architect’s influence spread, so did the understanding of the importance of testability.
Testing became an integral part of the architecture, ensuring that every component could withstand the
fires of scrutiny. The architect, like a vigilant sentinel, introduced continuous integration and continuous
delivery, forging a path where changes were seamless, and the kingdom's software evolved with grace.

The tale of the Software Architect in Codeburg became legendary. The kingdom prospered, and the
architects who followed in the footsteps of their predecessors continued to build upon the legacy, adapting
to new technologies and challenges.

And so, the story goes on in Codeburg, where the Software Architect remains a guardian of innovation,
a weaver of digital dreams, and a beacon of wisdom in the ever-expanding landscape of software
architecture.

Okay, this story above sounds more like a childhood fairy tale than an explanation of what
software architecture entails, but I felt it was a fitting introduction because I think that software
architecture is often not given the right importance in the software world. As a result, the idea
of what a software architect does can oftentimes feel like the stuff of fantasy than what actually
occurs in the average company.

I have seen it many times when companies end up suffering under the weight of incorrectly
architected applications, either stuck with software that is not performant, is buggy, or is
expensive to operate and maintain. These companies will then put pressure on engineering
teams to try and fix the issues and turn things around while trying to deliver more features
at an increasing pace, rather than revisiting their design. This leads to frustrated teams and
excessive maintenance that makes the software delivery more expensive than it needs to be.
Something which can be fine for many large organizations, but has killed off far too many
start-ups.

Which is one of the reasons why I feel this book is so important. While most companies
have software architects and rely heavily on their software architecture roadmap for their
development delivery, their role is often not prioritized. Architects are often not empowered
enough. Giving decision-making to managers and CTOs, who may not be skilled enough
in this department, leads to them making decisions on the strategy of the company. These
decisions are based on what they feel is best for the business and not necessarily based on what
is right for the software solution, leaving the software and its resultant delivery in a mess. All
because proper software architectural procedures were not followed, and the company likely
did not listen.

The hope is that by empowering more people to understand the critical role that software
architecture plays in the software delivery process, we can increase awareness across
engineering teams. As more engineers grasp its importance, we can begin to see teams and
companies place greater emphasis on proper software design. This, in turn, will empower
architects to take the lead in driving technical decision-making within companies.

During this book, we will frequently revisit our world of Codeburg to explain aspects of software
architecture more plainly, but we will also spend many chapters delving into technical topics
that explain some architectural terms in more detail.

So, whether you come from a technical background or are new to the world of software
architecture, you will hopefully be able to take something away from this book.

CHAPTER 1

Defining Software
Architecture

Introduction

Upon reading the prologue of the book, you must have understood that software
architecture is important and should not exist in the world of fairy tales—what is software
architecture, and what does it entail?

Software architecture refers to the high-level structuring of a software system, which
involves making key design decisions to ensure that the system's components work
cohesively to meet the specified requirements. It encompasses various elements, such as
the organization of software components, the interaction patterns among them, and the
guidelines governing their design and evolution.

While other roles in the software development process are involved in the creation of
specific functions, algorithms, and executable code that make the software work, the
software architect is more concerned with how everything will fit together and focuses
on the bigger structure of the software applications. They are also concerned about how
the various components should fit together, and not just the code that will achieve the end
result.

This does not mean that the software architect is not concerned with the code or involved
in the coding process. A successful software architect needs to be very familiar with the
coding patterns and style. They need to achieve their overall vision for the software in
development and be capable enough to review and take accountability that the delivered

4 Fundamentals of Software Architecture

code meets their purposes. At a high level, a software architect is focused on the various
aspects of software design, which we will be discussing in the chapter ahead.

Structure

In this chapter, we will discuss the following topics:
e Structural elements
e Architectural patterns and styles
e Architectural decision making

e Architecture in software development lifecycle

Objectives

By the end of this chapter, you will be able to understand the role of software architecture
in the software development landscape and how it fits across all other processes. This
chapter sets the basis for topics that we will discuss in later chapters.

Structural elements

These are different types of software components that are required to work together to
create a final cohesive application or user experience. We will look at each of these aspects
in more detail in Chapter 7, Architectural Components:

e Components: The modular building blocks of a system that encapsulate specific
functionalities.

e Connectors: The mechanisms that enable communication and interaction between
components (for example, APIs, messaging protocols).

e Data: The way information is stored, accessed, and managed within the system.

Architectural patterns and styles

Patterns represent bigger design processes that are followed across an application’s
design. They help us understand how certain structural elements fit together and provide
a cohesive flow of data and information between the different structural elements. The
following are some important attributes that need to be considered in software architecture:

e Design patterns: Reusable solutions for common design problems that help in
creating flexible and maintainable software.

e Architectural styles: High-level patterns that define the overall organization and
structure of a system (for example, client-server, microservices, monolithic).

Defining Software Architecture 5

e Quality attributes: Software architecture focuses not just on trying to solve for
the existing functional purposes of an application, but also needs to keep in mind
various quality aspects to ensure the software meets the long-term needs.

We will unpack some of these important quality attributes in Chapter 3, Architectural
Properties.

Some high-level considerations in this area are outlined as follows:

o Performance: How well the system responds to user inputs and handles
load.

o Scalability: The system's ability to grow and handle increased demand.

o Reliability: The system's ability to consistently perform as expected under
various conditions.

o Maintainability: How easily the system can be updated, extended, or
modified.

o Security: Measures taken to protect the system against unauthorized access
and data breaches.

e Design principles: Along with building the bigger patterns in how applications
work, it is also important for software architecture to focus on important design
principles that ensure the software can meet the quality attributes design.

The following is an example of two different design principles, though we will
unpack these in more detail in later chapters on architectural styles and architectural
patterns:

o SOLID principles: A set of five design principles for writing maintainable
and scalable software.

o Separation of Concerns: Dividing a software system into distinct sections,
each addressing a different concern. This is something we will unpack
further in Chapter 4, The Importance of Modularity, when we speak about
design modularity.

e Service-oriented architecture (SOA): Designing software as a set of loosely
coupled, independently deployable services.

e Microservices: Breaking down a system into small, independent services that can
be developed, deployed, and scaled independently.

Architectural decision making

Often when designing software, you will come across times when there is no one best
approach to design your application or part of an application. Architects will then be

