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Foreword

Over the past five years, I've immersed myself in Angular development, yet I consider
myself a full-stack developer. Unfortunately, full-stack development often faces criticism,
with phrases like “Jack of all trades” or “one cannot be a specialist in all disciplines”
frequently surfacing.

While it’s true that software disciplines are becoming increasingly complex, leading to
specialization, at our core, we are developers. The foundation of any software developer’s
skill set includes the ability to build basic applications, encompassing the classic trio:
frontend, backend, and databases.

In the ever-evolving and challenging world of software development, full-stack remains a
constant. Data needs a place to be stored (databases), transformation and logic must occur
(backend), and end-users need to interact with the application (frontend).

As a trainer, I meet many developers, and I often find that the best Angular developers
are also proficient in backend development and oversee the application holistically,
performing critical tasks requiring diverse expertise. More developers are embracing full-
stack development as the norm. This trend aligns with enterprise applications, where
Uls are often simple: forms and grids, processing and sending back data. Companies
increasingly favor developers with both frontend and backend skills, and Angular-only
developers report difficulties finding jobs without backend proficiency.

Even in large applications with hundreds of developers, the need for full-stack skills
persists. Teams are often vertically sliced, with specialists available to assist. The ability
to implement both frontend communication and backend endpoints accelerates feature
development, a valuable asset for any company.

I am grateful to Sangeeta for her dedication towards creating this book, addressing a
growing skill in our industry. I first met her at the Angular Meetup during Ng-conf 2023 in
SLC. Her professionalism and composed demeanor stood out, underpinned by thorough
research and profound insights.

Full-stack development forms the foundational common ground for developers.
Congratulations on your intent to discuss full-stack development, and a big shoutout to
Sangeeta for making this possible.

-Rainer Hahnekamp
GDE, Speaker, Trainer
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Preface

Distributed applications have been around for many years, taking a central role in software
development. A distributed application comprises a variety of software components
running on multiple computers or devices connected over a network. These components
perform different tasks to achieve the application's targeted functionality. To ensure
distributed systems are scalable, resilient, flexible, and performant, modern architectures
and technologies are emerging. Consequently, developing various components of
distributed applications involves different technologies. In other words, a stack of
technologies is now essential for building such applications.

In the recent past, Full Stack Development has become an important segment of the
developer community worldwide. A software developer with a variety of skill sets can
replace two or more developers working on individual technologies within the required
stack. Full Stack Developers are especially valuable as they need little or no outside help
in their work. The unique advantage of Full Stack development is that it combines two
essential parts of software application development: front-end and back-end technologies,
into a single complete stack. Full Stack developers have the required skill set to work
across the entire technology stack. They are proficient in developing front-end and back-
end code and integrating them. They also possess data management skills using RDBMS
or NoSQL databases. Software companies seek developers with Full Stack skills.

Angular is an ideal front-end framework for developing the web applications that
modern businesses aspire to build. Characteristics of modern web applications, such as
user experience, performance, flexibility, scalability, and rapid development are met by
Angular.

Angular is one of the top web application development platforms, helping create efficient
and sophisticated Single Page Applications. The framework has gained popularity due
to its compelling features like templating, modularization, dependency injection, data
binding, component libraries, and more.

For many years, Java has been a popular choice for back-end development. Spring is
one of the most popular Java frameworks for developing enterprise-level distributed
applications. Full stack developers proficient in technology stack like Angular, Java, and
Spring Boot are in high demand.
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This book will help learners master Full Stack development skills with Angular as the
front end and Spring Boot as the back end. It will guide learners through the entire process
of building scalable, enterprise-level, dynamic web applications, from scratch to end-to-
end testing.

Chapter 1: Single-page Application Architecture - This chapter provides you an overview
of Single Page Applications. Further, it explains the Component Architecture and its
importance. It also introduces TypeScript. The last section of the chapter contains clear
instructions for setting up the Angular environment and building the first Angular “Hello
World” application.

Chapter 2: Angular Building Blocks - It introduces main building blocks of Angular, such
as components, directives. This chapter introduces data binding in angular and, template
syntax. It covers different types of angular directives, built-in pipes etc.

Chapter 3: Components In-Depth - This chapter takes a deep dive into angular
components. It provides in-depth knowledge of component's life cycle hooks. It also
covers inter-component communication and data sharing among components. It explains
Angular Change Detection Mechanism and runtime optimization.

Chapter 4: Services and Dependency Injection - Components and Services are two
different entities in Angular and they serve different purposes. This chapter explains
services in depth. It talks about certain application tasks and how those are delegated
to services. The chapter also provides knowledge of Dependency Injection -a design
pattern. The chapter explains the significance of DI and how it can provide flexibility and
modularity to applications. The chapter provides a detailed explanation of the working of
Angular Dependency Injection System.

Chapter 5: RxJs Observables - This chapter focuses on synchronous vs. reactive
(asynchronous) programming. It explains the Reactive programming paradigm and event
handlers. The chapter also explains Observable Design Pattern, terminology and its usage.
It then takes a deep dive into creating and working with Observables using RxJs library.

Chapter 6: Routing and Navigation - Routing is the backbone of single page applications.
Angular facilitates Single Page Application development by providing built-in router
service. This chapter explains how to use Angular Routes to determine a user's navigation
from one view to another.
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Chapter 7: Forms in Angular - Handling user input has been one of the important
functions of frontend application development. Angular provides two different strategies
for creating forms namely Template Driven Forms and Reactive Forms. This chapter
covers both of these approaches in depth, and also summarizes the key differences in two
approaches.

Chapter 8: HTTP-client Service - It provides a detailed insight into Http-Client service
provided by angular. Communication with back-end services is one of the major tasks to be
carried out by front end applications and Angular provides “ HttpClient "- API for the same.
Chapter explains about carrying out all http related tasks like sending requests to server,
requesting typed responses, handling errors,intercepting requests and responses.

Chapter 9: Angular Modules and Standalone Components - This chapter explains the
concept of angular modules and its meta-data. Angular introduced the ‘StandAlone
components’ (also pipes, directives ) in version 16. Standalone components enhance the
application development process reducing the need for NgModules. The chapter delves
into the importance of standalone components, and their usage. The chapter also covers
bootstrapping the application and lazy loading with standalone components.

Chapter 10: Signals NgRx Introduction and Testing - It introduces Signals, a new feature
of angular. Further, the chapter provides insight into state management in angular using
NgRx library. The last section of the chapter shows how angular facilitates testing and
explains how to test angular components, services etc.

Chapter 11: Enterprise Application Architecture - It provides insight into enterprise
level application architecture which is usually distributed in nature. It covers important
architectural patterns including multi-tier architecture and MVC architecture for Web
application development.

Chapter 12: Spring Core/DI-IOC - Spring framework has become a de-facto standard
in java enterprise application development. The chapter provides knowledge on an
important feature of spring framework i.e. DI/IOC container. It explains how dependency
injection approach helps in development of enterprise applications with greater flexibility,
enhanced testability. It explains how DI approach helps in eliminating the shortfalls of
previous (non-DI) application development approaches.

Chapter 13: Spring MV C - It teaches web application development using spring web-MVC
module. It explains different components involved in spring MVC flow like dispatcher
servlet, handler mappings etc.
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Chapter 14: Spring Boot - This chapter provides deep knowledge about spring boot project
and its significance in building enterprise level distributed application.

Chapter 15: Spring REST - The chapter takes deep dive into REST principles and
the significance of this modern approach in achievieing application to application
communication and decoupling between client -server applications. The Spring REST
module greatly helps in simplified and faster development of RESTful web applications.

Chapter 16: Spring Data JPA - This chapter first explains Object Relational Mapping
(ORM) concepts, different ORM tools and significance of Java Persistence API (JPA) for
achieving loose coupling between different ORM tools and RDBMS. Later in this chapter,
readers learn the spring Data JPA module.This module makes writing the DAO layer of
applications extremely simple.

Chapter 17: Testing, Best Practices and Project - This last chapter explains how spring
facilitates unit testing of web applications in a simplified way with spring boot. This
chapter also delves into best coding practices and java coding conventions. Lastly, the
chapter describes an End-To-End Application to be developed using Angular as frontend,
and java, spring boot as backend technologies.
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CHAPTER 1
Single-page
Application

Architecture

Introduction

In this chapter of the book, we will cover single-page applications. We will see the
characteristics of a single-page application. We will go through its architectural details.
Then we will have an introduction to JavaScript, ECMAScript 2015 features and TypeScript.
We will also get introduced to Node.js.

Structure

The chapter covers the following topics:

Single-page applications

Single-page application architecture

Introduction to TypeScript

Introduction to Angular

Setting up Angular environment in Visual Studio Code

Building your first Angular app: “Hello World”
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Objectives

Upon completion of this chapter, you will be able to understand the single-page application
architecture. You will appreciate the significance of SPA architecture in web application
development and will know how to leverage the SPA architecture to gain various benefits.
At the end of the chapter, you will set up the Angular environment and build your first
Angular application.

Single-page applications

Observe Figure 1.1. It is a screenshot of an online shopping website:
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Figure 1.1: An online shopping website

Suppose Bob wants to do some shopping for his daughter, Myra, who is four years old. He
visits a website called myntra.com. On visiting the site URL, he gets a lot of options to select
from. Various tabs are available, like MEN, WOMEN, KIDS, etc. As Myra is a 4-year-old
kid, Bob clicks on the KIDS tab. We can see that many new options are available now, like
Boys Clothing, Girls Clothing, Footwear, Infants and so on. As Bob hovers the mouse
from one tab to another, respective contents will be changed immediately in the browser.

It is clear from the above example that, depending upon user (Bob) interaction, websites
are required to load dynamic content instantly.

Usually, such websites show plenty of menus, menu items, submenus, submenu-items,
etc., for the user to select from. Depending upon user interaction with any of those items,
respective contents on the page change instantaneously, maybe within fractions of a
second.
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What if Bob hovers or clicks on the girls’ footwear tab, and the website takes over 40
seconds to load the contents?

It means the website is unresponsive for a few seconds, and Bob must wait before seeing
the new content. In such a scenario, there are chances that Bob will leave the current
website myntra.com and will start looking for other websites to complete the shopping.
This response (slow) from websites will result in losing potential clients.

The above example shows that modern websites (web applications) cannot afford to keep
their clients waiting, and the webpage must be interactive throughout for the users. The
above example discusses an important quality called fluid user experience that modern
web applications must possess.

Fluid user experience
Fluid user experience for web applications can be characterized as following:

e Depending on the user interaction, however minute it may be, the web page's
contents should be loaded or changed dynamically and quickly.

e A web page should be interactive with the user throughout.

This kind of user experience expected from today’s modern web applications, is fluid
user experience. It is one of the most essential quality requirements that today’s modern
websites must support.

Once we know the fluid user experience, we can see how to achieve it.

Web applications need to generate dynamic content/views based on user interaction.
Loading another HTML page will trigger a browser refresh and require the creation of
a new Document Object Model (DOM). The process is time-consuming, and hence we
cannot afford it. It means dynamic view changes should happen on the same page. We can
achieve it through DOM manipulation. It changes the contents dynamically when the user
interacts with the page. That means no new page will get loaded in the browser, and there
will not be a browser refresh.

Now we are almost there. Let us get all the pieces together.

Single-page application architecture

Single-page application (SPA) is a web application that loads the contents dynamically
depending on user interaction without refreshing the browser throughout the application
life cycle. The user will be navigated through different logical views on the same page.

Letus compare traditional web app architecture with SPA. Figure 1.2 depicts the comparison
clearly:
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Figure 1.2: Traditional vs. SPA architecture
Source: angular.io

In the traditional approach, during initial and subsequent requests, the browser gets
refreshed with new DOM creation because the new html page is sent back as a response
from the server every time.

With a modern SPA approach, all the views/mark-ups will be sent to the client during
the initial request only, and all dynamic view generation will take place on the client side.
Here, dynamic view generation will happen through DOM manipulation, saving us from
multiple round trips to the server for subsequent dynamic views. While we are considering
client-side dynamic view generation, some questions will be arising like:

e  When and for what subsequent requests will be made to the server (as view
generation will happen on the client side)?

e What about application data? Where would the application data reside?
e What will happen when data embedded in the view needs to be changed?

Let us go deep to answer these questions.

While all logical views will be sent to the client during the initial request and navigation
to different views will happen on the client side, application data will permanently reside
on the server side. When data embedded in the view needs to be changed, a request to the
server will be made. This request must be made in a non-blocking way, as the page must
be interactive with the user throughout.
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It will be an Asynchronous JavaScript and XML (AJAX) call. The request will be made
asynchronously (AJAX call) only for data, and the server will respond with data in JSON
format.

In the traditional web application development approach, there is one more issue.
Supporting rich interactions with multiple components means, those components have
many more intermediate states like:

e Menu opened.

e Menu item X selected.

e Menu item Y selected.

e Menu item Z clicked.

For all such intermediate states, server-side rendering is hard to implement. Small view
states do not map well to URLs.

Now we can specify the quality requirements to be fulfilled from a modern web application
as following:

e Ability to redraw any UI part without requiring a server roundtrip to retrieve
HTML.

e No page refresh throughout the app life cycle.
e Page to be interactive throughout.

Considering all the above points, main traits of SPA are as follows:

o Itloads all the resources required to navigate the site, on the first-page load.

e As the user clicks links and interacts with the page, subsequent content is loaded
dynamically.

e Itoften updates the URL in the address bar to emulate traditional page navigation,
but another full-page request is never made.

Now, we know that SPAs are modern web applications having the important quality of
generating dynamic views on the client side. For developing such applications, we use
JavaScript, the language that gets executed inside a browser on the client side.

JavaScript

JavaScript was originally developed at Netscape Communications by Brendan Eich in 1995.
It was first developed as a scripting language for use in the web browser. JavaScript was
not regarded as a serious programming language earlier. However, over 20 years after
its inception, it is now one of the most used cross-platform languages. Though it started
as a small scripting language for adding trivial interactivity to webpages, JavaScript has
become a language of choice for front and back-end applications of every size. As it has
come a long way and is widely used, the language has undergone many enhancements.

Let us now see what typescript is for.
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Introduction to TypeScript

TypeScript is a superset of JavaScript. It offers all the features of JavaScript and a type
system. In JavaScript, there are a few primitive types available, like a number, string,
Boolean, etc., and it is a dynamically typed language. That means we do not have to specify
the type of a variable while declaring it. Datatypes are automatically converted as needed
during the execution of JavaScript. For example, we can declare a variable as follows:

let someVal = 13; (here type of someVal is number)

And we can assign a different type to the variable someVal later as follows:
someVal = “Assigning a string value here”; (here type of someVal is string)

These kinds of assignments are inconsistent and may not be intended. JavaScript is
dynamically typed, and these assignments do not generate any error messages. However,
TypeScript will generate an error message here. The main advantage of TypeScript here
is that it can highlight unexpected behavior in your code, lowering the chances of bugs.

Typescript can be regarded as an enhanced version of JavaScript with many new features.

Visual Studio Code

For developing Angular applications, we will need some integrated development
environment (IDE ). We will use Visual Studio Code which is a free editor and IDE. VS
Code is a powerful code editor that comes with built in support for JavaScript, TypeScript,
and Node.js.

Installing Visual Studio Code

Download Visual Studio Code from the link:
https://code.visualstudio.com/download

Run the downloaded executable and follow the steps to install VS Code on your machine.
After installing VS Code editor, we will go ahead with installations of Node.js, type script
and Angular CLL

Node.js

We know JavaScript gets executed inside a browser, that is, on the client side. Node.js is
an open-source and cross-platform runtime environment for JavaScript on the Server side.
Node js is built on top of the Google Chrome V8 JavaScript engine, mainly used to create
web servers. It runs the V8 JavaScript engine, the core of Google Chrome, outside the
browser. This allows Node.js to be very performant.

Installation of Node.js

Node js installation steps are as follows:



