Full Stack
Development with

Angular and Spring
Boot

Build scalable, responsive, and
dynamic enterprise-level web applications

Sangeeta Joshi

www.bpbonline.com

ii

First Edition 2025
Copyright © BPB Publications, India
ISBN: 978-93-65890-778

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in
this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete E E

BPB Publications Catalogue
Scan the QR Code: E

www.bpbonline.com

iii

Dedicated to

My father, Anil R. Kulkarni whose unconditional support

from the very beginning has been priceless

iv

Foreword

Over the past five years, I've immersed myself in Angular development, yet I consider
myself a full-stack developer. Unfortunately, full-stack development often faces criticism,
with phrases like “Jack of all trades” or “one cannot be a specialist in all disciplines”
frequently surfacing.

While it’s true that software disciplines are becoming increasingly complex, leading to
specialization, at our core, we are developers. The foundation of any software developer’s
skill set includes the ability to build basic applications, encompassing the classic trio:
frontend, backend, and databases.

In the ever-evolving and challenging world of software development, full-stack remains a
constant. Data needs a place to be stored (databases), transformation and logic must occur
(backend), and end-users need to interact with the application (frontend).

As a trainer, I meet many developers, and I often find that the best Angular developers
are also proficient in backend development and oversee the application holistically,
performing critical tasks requiring diverse expertise. More developers are embracing full-
stack development as the norm. This trend aligns with enterprise applications, where
Uls are often simple: forms and grids, processing and sending back data. Companies
increasingly favor developers with both frontend and backend skills, and Angular-only
developers report difficulties finding jobs without backend proficiency.

Even in large applications with hundreds of developers, the need for full-stack skills
persists. Teams are often vertically sliced, with specialists available to assist. The ability
to implement both frontend communication and backend endpoints accelerates feature
development, a valuable asset for any company.

I am grateful to Sangeeta for her dedication towards creating this book, addressing a
growing skill in our industry. I first met her at the Angular Meetup during Ng-conf 2023 in
SLC. Her professionalism and composed demeanor stood out, underpinned by thorough
research and profound insights.

Full-stack development forms the foundational common ground for developers.
Congratulations on your intent to discuss full-stack development, and a big shoutout to
Sangeeta for making this possible.

-Rainer Hahnekamp
GDE, Speaker, Trainer

About the Author

Sangeeta Joshi has more than 16 years of experience in the software industry. She has a
proven track record of working as a technical manager, technology training expert, and
subject matter expert at various MNCs. Sangeeta is an international speaker, a passionate
trainer and technology enthusiast. She is an Ng-Champion and approved blog writer
for angular technology on medium for NgConf channel. She has been recognized as
distinguished contributor for NgConf 2024, the angular original world conference held
in Salt Lake City, Utah. She has conducted more than 90 training programs on various
technologies like Full stack Java, Angular, React js, Micro-services, spring boot, REST,
Data- JPA, Pivotal Cloud Foundry etc., for MNCs across the globe, primarily in India, the
USA, the UK and Canada. Sangeeta has recently successfully completed the postgraduate
certification program in Artificial Intelligence and Machine Learning from Purdue
University, in collaboration with Simplilearn and IBM. Sangeeta strongly believes that
“learning is the key to success.”

vi

About the Reviewer

Amit Krishnakumar Deshpande is a seasoned Full Stack Java Developer with over 20
years of extensive IT experience in both software development and technical mentorship.
Since 2001, he has held key technical roles in prominent organizations such as Accenture,
Infosys, Wipro, Persistent, Cap Gemini, and Wiley. His expertise spans a wide array of
technologies including Data Structures and Algorithms, Core Java, Advanced Java, OOP,
Servlet JSPs, Spring Core, Spring MVC, Spring Boot, Data JPA, REST APIs, RDBMS, SQL,
as well as front-end technologies like HTML5, CSS3, Bootstrap, Advanced JavaScript,
TypeScript and Angular, React.

In addition to his development skills, Amit has a strong focus on corporate training, having
conducted numerous technical workshops and training sessions globally, in countries like
India, Japan, Israel, and Australia. He has trained over 10,000 professionals, significantly
contributing to their technical growth.

Beyond his professional life, Amit enjoys playing sports such as badminton and table
tennis. He is also a poet and a keen participant in philosophical discussions, continuously
seeking knowledge in the field of spirituality.

vii

Acknowledgement

First and foremost, I would like to thank my husband, Dr. Satish Joshi, for being patient
and making it possible for me to focus on my writing by freeing me from my other
responsibilities. I would like to extend my thanks to my daughter, Rujuta Joshi, a voracious
reader, who continuously encouraged me to write this book. I would like to thank my
mother, Nandini Kulkarni, who is delighted by my success no matter how small it may
be. I am grateful to my entire family including Nikhil, my two sisters, my brother, and my
in laws. I express my love to the little bundle of joy, my granddaughter Saeshma, for being
a delight throughout the ups and downs of my book-writing journey.

I am grateful to Rainer Hahnekamp for accepting my request, taking time out from his
busy schedule and writing a foreword.

Last but not least, I would like to extend my gratitude to all my friends who have always
stood by me.

viii

Preface

Distributed applications have been around for many years, taking a central role in software
development. A distributed application comprises a variety of software components
running on multiple computers or devices connected over a network. These components
perform different tasks to achieve the application's targeted functionality. To ensure
distributed systems are scalable, resilient, flexible, and performant, modern architectures
and technologies are emerging. Consequently, developing various components of
distributed applications involves different technologies. In other words, a stack of
technologies is now essential for building such applications.

In the recent past, Full Stack Development has become an important segment of the
developer community worldwide. A software developer with a variety of skill sets can
replace two or more developers working on individual technologies within the required
stack. Full Stack Developers are especially valuable as they need little or no outside help
in their work. The unique advantage of Full Stack development is that it combines two
essential parts of software application development: front-end and back-end technologies,
into a single complete stack. Full Stack developers have the required skill set to work
across the entire technology stack. They are proficient in developing front-end and back-
end code and integrating them. They also possess data management skills using RDBMS
or NoSQL databases. Software companies seek developers with Full Stack skills.

Angular is an ideal front-end framework for developing the web applications that
modern businesses aspire to build. Characteristics of modern web applications, such as
user experience, performance, flexibility, scalability, and rapid development are met by
Angular.

Angular is one of the top web application development platforms, helping create efficient
and sophisticated Single Page Applications. The framework has gained popularity due
to its compelling features like templating, modularization, dependency injection, data
binding, component libraries, and more.

For many years, Java has been a popular choice for back-end development. Spring is
one of the most popular Java frameworks for developing enterprise-level distributed
applications. Full stack developers proficient in technology stack like Angular, Java, and
Spring Boot are in high demand.

ix

This book will help learners master Full Stack development skills with Angular as the
front end and Spring Boot as the back end. It will guide learners through the entire process
of building scalable, enterprise-level, dynamic web applications, from scratch to end-to-
end testing.

Chapter 1: Single-page Application Architecture - This chapter provides you an overview
of Single Page Applications. Further, it explains the Component Architecture and its
importance. It also introduces TypeScript. The last section of the chapter contains clear
instructions for setting up the Angular environment and building the first Angular “Hello
World” application.

Chapter 2: Angular Building Blocks - It introduces main building blocks of Angular, such
as components, directives. This chapter introduces data binding in angular and, template
syntax. It covers different types of angular directives, built-in pipes etc.

Chapter 3: Components In-Depth - This chapter takes a deep dive into angular
components. It provides in-depth knowledge of component's life cycle hooks. It also
covers inter-component communication and data sharing among components. It explains
Angular Change Detection Mechanism and runtime optimization.

Chapter 4: Services and Dependency Injection - Components and Services are two
different entities in Angular and they serve different purposes. This chapter explains
services in depth. It talks about certain application tasks and how those are delegated
to services. The chapter also provides knowledge of Dependency Injection -a design
pattern. The chapter explains the significance of DI and how it can provide flexibility and
modularity to applications. The chapter provides a detailed explanation of the working of
Angular Dependency Injection System.

Chapter 5: RxJs Observables - This chapter focuses on synchronous vs. reactive
(asynchronous) programming. It explains the Reactive programming paradigm and event
handlers. The chapter also explains Observable Design Pattern, terminology and its usage.
It then takes a deep dive into creating and working with Observables using RxJs library.

Chapter 6: Routing and Navigation - Routing is the backbone of single page applications.
Angular facilitates Single Page Application development by providing built-in router
service. This chapter explains how to use Angular Routes to determine a user's navigation
from one view to another.

X

Chapter 7: Forms in Angular - Handling user input has been one of the important
functions of frontend application development. Angular provides two different strategies
for creating forms namely Template Driven Forms and Reactive Forms. This chapter
covers both of these approaches in depth, and also summarizes the key differences in two
approaches.

Chapter 8: HTTP-client Service - It provides a detailed insight into Http-Client service
provided by angular. Communication with back-end services is one of the major tasks to be
carried out by front end applications and Angular provides “ HttpClient "- API for the same.
Chapter explains about carrying out all http related tasks like sending requests to server,
requesting typed responses, handling errors,intercepting requests and responses.

Chapter 9: Angular Modules and Standalone Components - This chapter explains the
concept of angular modules and its meta-data. Angular introduced the ‘StandAlone
components’ (also pipes, directives) in version 16. Standalone components enhance the
application development process reducing the need for NgModules. The chapter delves
into the importance of standalone components, and their usage. The chapter also covers
bootstrapping the application and lazy loading with standalone components.

Chapter 10: Signals NgRx Introduction and Testing - It introduces Signals, a new feature
of angular. Further, the chapter provides insight into state management in angular using
NgRx library. The last section of the chapter shows how angular facilitates testing and
explains how to test angular components, services etc.

Chapter 11: Enterprise Application Architecture - It provides insight into enterprise
level application architecture which is usually distributed in nature. It covers important
architectural patterns including multi-tier architecture and MVC architecture for Web
application development.

Chapter 12: Spring Core/DI-IOC - Spring framework has become a de-facto standard
in java enterprise application development. The chapter provides knowledge on an
important feature of spring framework i.e. DI/IOC container. It explains how dependency
injection approach helps in development of enterprise applications with greater flexibility,
enhanced testability. It explains how DI approach helps in eliminating the shortfalls of
previous (non-DI) application development approaches.

Chapter 13: Spring MV C - It teaches web application development using spring web-MVC
module. It explains different components involved in spring MVC flow like dispatcher
servlet, handler mappings etc.

xi

Chapter 14: Spring Boot - This chapter provides deep knowledge about spring boot project
and its significance in building enterprise level distributed application.

Chapter 15: Spring REST - The chapter takes deep dive into REST principles and
the significance of this modern approach in achievieing application to application
communication and decoupling between client -server applications. The Spring REST
module greatly helps in simplified and faster development of RESTful web applications.

Chapter 16: Spring Data JPA - This chapter first explains Object Relational Mapping
(ORM) concepts, different ORM tools and significance of Java Persistence API (JPA) for
achieving loose coupling between different ORM tools and RDBMS. Later in this chapter,
readers learn the spring Data JPA module.This module makes writing the DAO layer of
applications extremely simple.

Chapter 17: Testing, Best Practices and Project - This last chapter explains how spring
facilitates unit testing of web applications in a simplified way with spring boot. This
chapter also delves into best coding practices and java coding conventions. Lastly, the
chapter describes an End-To-End Application to be developed using Angular as frontend,
and java, spring boot as backend technologies.

xii

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/qra2ztr

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Full-Stack-Development-with-Angular-and-Spring-Boot.

In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical articles,

sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

xiii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xiv

Table of Contents

Single-page Application Architecture 1
INtrOAUCHON. ...t e 1
SHUCKUTC. ...t 1
ODJECHIVES ...t s 2
Single-page applicationscccouvuiuiiiiiiiiiiiii 2
FIUTA USEE EXPETIENICE. ...ttt 3
Single-page application architeCturecceuvecueuriccirineciricereee s 3
JAVASCTIPE .o 5
Introduction to TyPeSCript......ccoviiiiiiiiiiiiccc 6
Visual STUAIO COAEcuvvevvieveiciiiiiicicieieeecce e 6
Installing Visual Studio COdecccovuvuviiiiiiiiiiiiiicicicicciccicccccc 6

INOAE.JS ..ot 6
Installation of NOAE.JScccvuiuiiiiiiiiiiiiiiciiiiiicc st 6
Installation of TYPESCIIPt......ceveveieieiiiiiicieieeee e 7
Writing first TypeScript PrOQYamtcccccucuveiiiiiiiiisiiicicicciiciiiccsecc 7

Static type CHECKINGccvuiuiuiiiiiiiiiiicicicccc s 7

CLASSES «..cvvvvvveieicicictc e 9

Benefits of TYPESCIIPE ..ottt 10
Introduction to0 ANGUIATcooiiiiiiiiiiiiii 10
ANQUIAY CLL.....ooiiiiiiiiiccc 11
Installing AnGUIAY CLIL........cccccovviiiiiiiiiiiiiciiiiiiiciic 11
Setting up Angular environment in Visual Studio Code..........cccevvviiinnninnnnnn. 11
Building your first Angular app: Hello Worldccccccviviviiivininiciiiiiiine, 14
CONCIUSION. ...ttt 16
Points tO 1emMeMDETc.ovoviiiccci e 16
Multiple ChOiCe QUESHONSvvuieiiiiciciiiieiecciei e 17
ATISWETS ...ttt 17
2. Angular Building Blocks 19

| 5aka w'eTe 18 Tetn (o) o FRRRRRNRRR PRSPPI 19

X0

SHUCKUT®. ...t 19
ODJECHIVES ..o 20
Component architeCtureccuiuiiiniiiiiic e 20
Angular COMPONENLESccruiiiiiiiiiiiicc e 22
Creating our first COMPONENLEcoovvviucurueieieisieisiciiccce e 27
Understanding bindingcccoeiviiiiiiiiiicccc e 32
View and model synchronizationcccceeevocicccsissieiiiscccese e 32
Binding between view and model................cccocveeieiiioiiiiiieieieiee 32
Property Dindingccovvviiuiicicieiciciciciccccee e 33
Understanding directives...........cccouoviiricininiiiiiiccccec e 36
COMPONEIES ... 36
AHTIDULE AITECHTVES ... 36
SHUCHUTAL ATTECHTVES ... 37
Structural directive SHOTTRANccvvvvvoiiiiciiiciciciccce s 37
PIPES oo 38
CONCIUSION ... 40
Points tO 1eMeMDET ..o 41
Multiple choice UESHIONSc.cuiiiiiiiiciiiic s 41
ANSTWETS oottt s 41

3. Components In-Depth 43
INErOAUCHON. ..o 43
SHUCKUT®. ..ot 43
ODJECHIVES ... 44
EXploring COMPONENtS.........cccviiuiurieieieiiiicccie e 44
ANGUIAT AIFECHVES ... 44
SHUCHUTAL ATTECHVES ... 44
Directive *NGFOTccvuvuvieiiieieiiiiiitcccicice 45
Directive *NGIf.......covvieieieiiieieiiic 47
BIRAING ..ottt 49
EVent DINAINGcccvovvieieiieiiieieiciciccccice e 50
Lifecycle NOOKScc.cuiiiiiiiiciicicccccc s 52
Inter-component coOMmMUNICAIONovoviiiiiiiii e 54

View encapsulation ... 60

xvi

Change detection..........ccuuiiiiciiiiciiccic s 60
CONCIUSION.....ouiiiiiiii s 60
Points t0 T€MEMDETc.ccoiiiiiiiiic s 61
Multiple choice UESHIONSc.vuuiiiiiiiciiicic s 61
ATISTUCTS .ottt 61

4. Services and Dependency Injection......... 63
INErOAUCHON. ... 63
SEIUCHUTE....cviiiiiic s 63
ODJECHIVES ... 63
INtroduction tO SEIVICESc.cucuiuiuiiiiiiciiicc e 64
Angular services in depthi ... 64
Dependency iNJECHIONcccueveviiriiiiiccciee e 65
Angular dependencyy iNJECtiONcvveueueiniiieiiiiiiicciee e 65
@INJECEADIE ... 70
Dependency injection and flexibility..........cccovvvveiiiiiiiceieicieiiiiiiccceee 72
CONCIUSION.....ouiiiiiiii s 77
Points t0 T€MEMDETcoiiiiiiiiic s 77
Multiple choice UESHIONSc.vuuuiiiiiiiciiiicc s 77
ATISTUCTS .ottt 78

5. RxJS Observables......... 79
INErOAUCHON. ... 79
SEUCHUTE. ...t s 79
ODJECHIVES ... 79
Synchronous vs. reactive (asynchronous) programming.............cccececcuviuruccunicnnes 80
SYNCHIONOUS ... 80
ASYNCHIONOUS ..ottt 80
SYNCHTONOUS EXCCULION ...ttt 82
Asynchronous programming mModel...............cccooevveiceeeeisiiiiiiiiceeeeeesisne 83
EVENt handIersc.cuoviueiiiiciiciciiciciccirce et saees 85
ODSEIVADIES ...t s 85
Understanding 0DServablesccvvueeieiiiiiiiiiiicicicicisieieiicccceee e 86

Understanding observable patterti.............ccovvvcvensisiiiiiiiiccciceeciecsscnne 86

ODSEIVLTS ...ttt 88
RXJS OPEIAtOTS....ovcvieiiiiiiietetctct e 90
Creation OPETALOTScccvcviveveveieiciciiicicie e 90
Pipeable OPerators..........ccvcveviciiicieieieicicicc e 91
CONCIUSION.....ouiiiiiiii e 91
Points t0 T€MEMDETccciiiiiiiiiici s 92
Multiple choice UESHIONSc.cuuiiiiiiiciiiicic s 92
ATISTULTS .ottt 92

6. Routing and Navigation - - - - - - 93
INErOAUCHON. ... 93
SEUCHUTE. ...t s 93
ODJECHIVES ... 94
Revisit single page application...........cccoceiiiiniiiiiicic e 94
Routing terminologycoveueiiiiiiiiiiiiiccie e 94
Example application with basic TOUHNG..........ccceeveveviviviiieieiccciecce e 95
Sample application: Book-master /detail-demo............cccccocueiuriciiniciniriniinicininnnn. 100
Application ArCRItECHUTE..............cccvoviiiicicieieieieieicttcce s 100
ROUte-PAramMS. ... 108
ROULE OTA T ..o 110
Adding @ redirect. ... 111
Adding @ 404 PAGE.......cccruiurieieiiic s 111
CONCIUSION ...ttt 111
Points to TeMEMDETccociiiiiiiiiiiiiiii e 111
Multiple choice UESHIONSc.vcviuiiiiiiiiii e 112
ATISTCTS .ttt 112

7. Forms in Angular crereeeneneseneneaeans 113
INErOAUCHON. ... e 113
SEIUCEUTE....viiiiiii e 113
ODJECHIVES .ot 114
OVervIEW Of fOITINSvviiiiiiiiiicc s 114
Key differences..........cccviiiiiiiciciccc s 114

ReACHTVE fOTTNS .ot 114

xXUiii

Template Arivern fOrmscocvvvmieeieieieiiiiiicces s 116
Data flow in fOImS........cociiiiiiiiicc e 117
Using template driven forms..........ovveeeiiiiiiiiciicieisieisieieccccccee e 117
USING 1EACETVE fOTMIS ..ovvvvviiiicicicicicie et 119
Form validations...........cociiiiiiiiiiiiicc e 121
Template driven form validation and error MeSSAZES............ccowveeeieievereviccrnnnnnn, 121
Reactive form Dalidation.............ccceeeivioiciiecicieiccce e 122
ETTOF THESSAZES ...vvviete s 124
Creating dynamic fOrmS........cccviririiiiiniiiicce e 126
Reactive vs. template driven............cccvvevvvciiieeieiciciciicccee e 127
CONCIUSION ...t 128
Points tO TeMeMDET ..o 128
Multiple choice UESHIONSc.vcuiuiiiiiiiciiic e 128
ATISTWCTS ..ottt s 128

8. HTTP-client Service..... vereeeenereneasneneaaanas 129
INErOAUCHON. ..o 129
SHUCKUT®. ...t 129
ODJECHIVES ..t 130
Overview of server CommuniCationcccoceueurieinininiiicceee e 130
HTTP DASICS ...ttt 130
HTTP CLIENE ..ottt 131
IMPLementationooeeveiiiiiiiiiiieiecccc e 132
Requesting data from SEerver...........ccoiiiiininiiiniiiicccc e 135
Configuring URL parameterscccoovveicurcininniniiccceeeesscscse e 137
Sending data to the SEIVer..........cccociiiiiiiiiiiiiciiccc s 137
Handling request IT0TSc.ccviiieieiiiiiiicccc e 139
SUDSCTTDE TMEHNOA. ..ot s 139
SUCCESS CAIIDACK ... s 140
EFFOF CAIIDACK ... 140
Intercepting requests and reSPONSEScccvueveviiiririeinince e 141
CONCIUSION. ...t 142

POINES tO TOIMCINIDOT ..ottt ettt e et e e et e e e et e e e seaeeeesateesenaneessanaes 143

Multiple choice UESHIONSc.vucviuiiiiiiiciiic e 143
ATISTWCTS ..ottt s 143

9. Angular Modules and Standalone Components ... crereenerenaeaennes 145
INErOAUCHON. ...eei s 145
SHUCKUT®. ... 145
ODJECHIVES .ot 146
NGMOUIE ... 146
Introduction to stand-alone components............ccocoveurieinininniniicncees 147
Creating standalone COMPONENESccvvueueieeieieieiiiieieeecieiessce e 147
Using NgModule-based cCOMPONENESccoovvvvveeueieisisisiiiiiiccicieceeiesessan 149
Lazy 10ading.......cceuiiiiiiiiciiicc e 150
Lazy loading with MOAUIES..............cccevvveiviiiiiiieieicicicicce e 150
Bootstrapping with standalone component.............cccccoceiciinicininininiciniciienn. 151
Configuring dependency injectioncccooeveeininiiiiiiicccne 153
CONCIUSION ...t 154
Points tO TeMeMDETc.ovoviiic s 154
Multiple choice UESHIONSc.vucviuiiiiciiciiii e 154
ATISTWCTS ..ottt s 154

10. Signals NgRx Introduction and Testing .. vt eans 155
INErOAUCHON. ...eei s 155
SEUCKUT®. ...t 155
ODJECHIVES .ot 155
SIGNALS «.evvie s 156
KNOWing SiQals............coueveviiiiiiiiiiieieieiciccitice e 156
Creating @ SiQNALccovvueueueieieiiiiiiiieccce e 156
Reading a signal VALUEcccueveieveviiiiiiicicieiecctc e 156
Computed SINALScccvvueuieiieieieieiciiiccccce e 156
Updating the value of writable SIgNAl...............ccccoovvuveinniiiiiiiiciceeeeec 157
SIGNAL EXATMPLE.......ovvviiiiiieeec s 157
Introduction t0 NGRX......cciiiiiiiiiiiiccc e 163
TOSHINE v 165

JASTHLITIE ettt 165

xXx

KATMA oo 167
Unit testing in ANGUIATccvvvveueieieieiiiiiicccce s 167
Component teSHNGcovuevvveiciiiiiiieieieieicc e 168

CONCIUSION.....ouiiiiiiii s 170

Points t0 T€MEMDETc.ccooiiiiiiiiiiiiii s 170
Multiple choice UESHIONSc.vcuieiiiiiiiiiiic e 171
ATISTCTS .ttt 171

11. Enterprise Application Architecture......... ceesneneaeneneneanes 173
INErOAUCHON. ... 173
SEIUCTUTE....viiiiiiiic e 173
ODJECHIVES .ot 174
Typical tasks in a software applicationcccoovevcrriininiiiniccccces 174

N-HET ArChITECTUTEoeevieiicecc e 175

Single-tier ArCHIEECtUTE.ccvveeieiieieieicicicce s 175

Two-tier ATCHITECHUTE ..ot 176
Client And SETVLYccucucuiiiiiiiiiicicieeccc s 177

Three-tier AYCHItECHUTEc.cviiiiiiiiciciciiiiici s 177

Thick-server ArchIteCtUTe.c.ccvucucuciiiiiiiiiiccccc 178

Layered arcRiteCtUTeccvveucueieieiiicicicccee e 179

Multi-tier ArCHItECHUTEcccviiciciiiiiiiicici s 180

Introduction to distributed architectureccooocerecirnecirnicrececceecan, 181

Enterprise applications...........ccceviviviiiicicieieisisisicicicccicee e 181

Distributed NATUTE...........ccoccovciviviiiciciiiiiiciciics s 181

Enterprise applications are distributed in NALUTEcovvvveevcieiiiiiicicicieeiei, 182

Java enterprise edition..........cccoviiiiriiiiiniii 182

NEtWOTK PrOLOCOIS. ... 183

Java EE application 1ayers.........cocoeeueieiniiiiiccciciccccc s 183

Presentation/view LAYET .o 183

BUSTINESS LAYLT ... 184

Data access 0DJECts LAYETc.cvvviviiiiiiiiicicicicisieiciicccce e 184

MVC pattern for web application development...........c.cccoovvvviiiiiiniiniiiinne, 184
CONCIUSION.....ouiiiiiiii s 185

POINES tO TOIMCINIDOT ..ottt ettt e et e e et e e e et e e e seaeeeesateesenaneessanaes 186

Multiple choice UESHIONSc.vucviuiiiiiiiciiic e 186
ATISTWCTS ..ottt s 186

12. Spring Core/DI-IOC reeseeneateneaaasans 187
INErOAUCHON. ...eei s 187
SHUCKUT®. ... 187
ODJECHIVES .ot 188
Spring framework OVeIVIEWccueveiiiiiiciciciecn e 188
Framework architeCture.............ccueueveveicieiiiicicieicieecctccce e 188
Business layer of enterprise pplicAtionsc.cocoevvvvrereeeieiniiiiiiccceeein, 189
Java EE (EJB)API for business layer and its shortfalls...............cccccovvrunnnnn. 189

Spring Core module for business [ayer...............cccccvvvvvvcccesnsiiiiiccceennnns 190

DI/ TOC CONEAINIET vttt e et e et e e e e et eeeeeeeeeseesee st eeaeeaaeseeeeesneeeaeenes 191
Dependencyy inJeCtionccwuveueieieiiiiiiicicicieeisisisiccciee e 191
Traditional APPIOACH............cccviiiicieieieieicictccce s 191
Tight COUPLING ..ot 192

DI PPIOACH ..ottt 192
INVErsion Of CONTOLccovoviiiiicicieieiciciicccce 194
CONfIGUIATION ..ot 194
XML configuration and annotation-based configurations..........ccccccceevrviviiinnnes 195
SEHET TIJECLION ..ottt 198
CONSETUCLOT TNJECHON ..evevvvvieiieicic s 198
Annotation based CONfIQUIALIONccovuvueieieieiiiiiiicieeee s 199
@Autowired ANNOLALIONvvvviiiicicicieieicc e 200
@Qualifier ANNOLALIONcuvevveieiiiiicicicieee e 202
BeanFactory and ApplicationContextcocoevoiicininnininiiiccccecces 202
CONCIUSION ... 204
Points tO TeMeMDET ..o 204
Multiple choice UESHIONSc.vucuiuiiiiiiiiiic e 204
ANISTWCTS ..ottt s 205

13. Spring MVC.. o, 207
INErOAUCHON. ...evii 207

SETUCEUT. oottt ettt e e e ettt e e e e e aat e e e e eessaaaaaeeessesnaaseesssesnsanaeeeeaas 207

xxii

ODJECHIVES .ot 208
Introduction to Spring MVC.........c.ccoiiiiiiiiiccc e 208
Overview of [ava web AppliCAIONS.ccoveviiireeieieiciciiiiicccce s 208
Understanding MVC architecture..............cccuueuiiniciniciiiniciniciieicsesecceeeae 209
Front controller design pattern...........cccceeueuiiiiiiiiiiicieccce e 210
DispatcherServiet ... 211
Spring (Web) MVC architecture ..o 211
Spring web cOmPONENts...........cccviuiieiiiiiiicccc e 212
DiSpatcherServletvvvuvucueieieiiiiiiiiiiccce e 213
HandlerMappingccoccvvveeurninisisiiiiiicicisisiee et 213
CONMEPOLICTTHATIALET .ottt et ee e e e nanen 214
CONCIUSION ...t 216
Points tO TeMeMDETc.ovoviiiii s 216
Multiple choice UESHIONSc.vcuiuiiiiiiici e 217
ATISTWCTS ..ottt s 217

14. Spring Boot.... ceereneenenenseneneaeans 219
INErOAUCHON. ...evii 219
SEUCKUTE .o s 219
ODJECHIVES .ot 220
Java configuration ..o 220
@Configuration and @BEArccovvveueieieieiiieiciicee e 220
Understanding spring boot...........ccooviiiiiiniiiniiicccc e 221
The problern At HANG............c.ccovviiicieieieieiciiicicccee s 221
AUto-configuration.........ccccriiiiiiiiiiiicc e 221
USing auto CONfIQUIALIONvovvviieiiiicicicieieieiitcccee s 224
@Enable AutoCONfIQUIAIONcvvevieiiiiicicicicieieieiccc e 224
Related annotations..........ccceueieiiiiiiicicic e 225
@SpringBoot APPLICAtION..........c.cveveveiiiiiiiicicicieeieee e 225
SEATTRTS ... s 226
Starter-Parentcccoveiivieieicicc e 227
Embedded containersccocvreirieiniiiiiiiccccc e 227
Externalized configuration............cccceueviiiiiiiiiiniccc 228

COMICIUSION .ttt ettt et e et e e et e e et eeeeaaeeseaeeessaseeseaaseessssbeesesaseesenseessnnes 228

POINtS 10 TEMEMIDETcouieiiiiiiiieceeeeeet ettt ettt ae s nes 228
Multiple choice UESHIONSc.vcuiuiiiiiiici e 228
AATISTUBTS vttt ettt ettt et sttt et et st et e e et e s et e st e e aatesatesttenteentesntenteenteenes 229

15. Spring REST.. ceresreneaeaeneneanes 231
TNETOAUCHON. ...ttt ettt ettt et e beebeebeeseessesaensessessenes 231
SEIUCEUT. ..ttt ettt ettt e et e st e et e e b e et e s st eseenseensasssanseenseensasnsansean 231
ODJECHIVES .ot 232
Web services and REST introduCtion........cccceeeeieieieieiieiesiesieceeeeeie e 232
Web APPLICALIONS ...t 232
VWED SCIUICES .vavvevvenveieciesie et et ettetee ettt ettt ettt ettt te et e est sttt e st et e se s e senre e 232
INEFOAUCHION £0 REST .ottt ettt 233
REST QrChit@CtUTE c..vvvvvieivetieieeeeeetee ettt ettt v st es s s teae 234
REST PIiNCIPIES......cviiiiieiicicicietetccccici s 234
Spring REST and related annotations..........cccccoeeeiniiiiiccccnnicccccee 235
MUVC fIOUW ..ottt 235
SPring REST ...coviii s 236
Stereotype ANNOLALIONScvovvveveviieieieiciiiictctse e 236
@RESECONEIOILET ... ettt ettt et beebeebeeseeseessensessessanes 237
ALCHIONIS .ttt ettt et e ettt e e et e s st e b e e beenbe e st e s st e beenbeenbeentenneebeenteenes 239
FOrwarding.........cceiiiiiiiccc e 244
REAITECHON ...ttt ettt ettt ettt et e s beebeeseeseessessessessessanes 245
FOrward US. YOAITECEc.vccveeueevieieieieieiecese ettt ettt sre s 246
CONCIUSION ...ttt ettt et et et e s teebeereese e st e b essesessasseeseessessensensensanes 246
POINtS 10 TEMEMIDETcovieiiiiiiiieceeeeeeee ettt ettt ss s se s 246
Multiple choice UESHIONSc.cvuciiuiiiiiiiiic e 246
AATISWTS ..ttt ettt ettt et e et e bt e e e b e e sbe s st e b e e beensa e st e ese e seenbeenbesntenseenseenseenes 247
16. Spring Data JPA creesseeneeteeatssaeens 249
TNETOAUCHON. ...ttt ettt ettt et e s beebesbeeseeseesaessessessanes 249
SETUCEUT. ..ttt ettt ettt ettt e et e st e et e e b e et e s st e seeseensaessanseenseensasnsansean 249
ODJECHIVES .ot 250
Object relational MaAPPINg.......ccccvvruriririiiiiiiccc e 250

Java PersiStence AP ..ot et s 254

xXX10

REPOSTEOTY oottt 255
JPAREPOSIEOIY «.eviiiiiiicictct s 256
@REPOSIEOTYvvvviiiiiiiitete ettt 256
Configuration in application.propertiesccceeeeiicccicnniiciicccceeeee 256

SETVICE LAYLT .t 259

CONLTOLLETTWED LAYET ... 262

Automatic CUSEOM QUETIES.........c.eueveueeiiiiiieieieieiiiciie e 264
CONCIUSION ...t 265
Points tO TeMeMDETc.ovoiiiiic s 266

Multiple choice qUESHIONSccvoviiiiiicieieieieieicitcctee s 266

ATISTWCTS ..ottt s 266

17. Testing, Best Practices and Project vereereneneneaeneaeaeanes 267
INErOAUCHON. ..o 267
SHUCKUT®. ...t s 267
ODJECHIVES .. 268
Testing with SPring BoOtccciiiiiiiiiiiiciiiiiciciccc e 268
Coding standards and best practices...........cccocoeueininiiiiiiiiiiniccce 272
End-to-end application development projectcccccooveeniniiiiniiiccccccne, 274

Movie and review management SYSteMcocovvvvvecueeeiesiiiiiicicceeeeiesesnnns 274
CONCIUSION ...t 276
Points tO TeMeMDET ..o 277
Multiple choice UESHIONSc.vucuieiiiiiiiiiic e 277
ATISWETS ...ttt 277

Index ..279-284

CHAPTER 1
Single-page
Application

Architecture

Introduction

In this chapter of the book, we will cover single-page applications. We will see the
characteristics of a single-page application. We will go through its architectural details.
Then we will have an introduction to JavaScript, ECMAScript 2015 features and TypeScript.
We will also get introduced to Node.js.

Structure

The chapter covers the following topics:

Single-page applications

Single-page application architecture

Introduction to TypeScript

Introduction to Angular

Setting up Angular environment in Visual Studio Code

Building your first Angular app: “Hello World”

2 W Full Stack Development with Angular and Spring Boot

Objectives

Upon completion of this chapter, you will be able to understand the single-page application
architecture. You will appreciate the significance of SPA architecture in web application
development and will know how to leverage the SPA architecture to gain various benefits.
At the end of the chapter, you will set up the Angular environment and build your first
Angular application.

Single-page applications

Observe Figure 1.1. It is a screenshot of an online shopping website:

v M Kids Clothing - Buy Kids Clothe X + - [u} X
€ > G % myntracom/shop/kids :
new o (VI
MEN WOMEN KIDS HOME&LIVING BEAUTY STUDIO Q searchfor products, brands and more =
Profile Wishlist Bag

Boys Clothing Girls Clothing Footwear Infants Kids Accessories
TShirts Dresses Casual Shoes Bodysuits Bags & Backpacks

Shirts. Tops Flipflops Rompers & Sleepsuits Watches

Shorts Tshirts Sports Shoes Clothing Sets Jewellery & Hair accessory
Jeans Clothing Sets Flats Tshirts &Tops Sunglasses

Trousers Lehenga choli Sandals Dresses Masks & Protective Gears
Clothing Sets Kurta Sets Heels Bottom wear Caps &Hats

Ethnic Wear Party wear School Shoes Winter Wear

Track Pants & Pyjamas Dungarees & Jumpsuits Socks Innerwear & Sleepwear Brands

Jacket, Sweater & Sweatshirts Skirts & shorts Infant Care e

Party Wear Tights & Leggings Toys & Games MaxKids

Innerwear & Thermals Jeans, Trousers &Capris
Nightwear & Loungewear Jacket, Sweater & Sweatshirts

Learning & Development Home & Bath Pantaloons

Activity Toys United Colors Of Benetton Kids
Value Packs Innerwear & Thermals Soft Toys Personal Care YK

Nightwear &Loungewear Action Figure / Play set U.S. Polo Assn. Kids
Value Packs

Mothercare
HRX

Figure 1.1: An online shopping website

Suppose Bob wants to do some shopping for his daughter, Myra, who is four years old. He
visits a website called myntra.com. On visiting the site URL, he gets a lot of options to select
from. Various tabs are available, like MEN, WOMEN, KIDS, etc. As Myra is a 4-year-old
kid, Bob clicks on the KIDS tab. We can see that many new options are available now, like
Boys Clothing, Girls Clothing, Footwear, Infants and so on. As Bob hovers the mouse
from one tab to another, respective contents will be changed immediately in the browser.

It is clear from the above example that, depending upon user (Bob) interaction, websites
are required to load dynamic content instantly.

Usually, such websites show plenty of menus, menu items, submenus, submenu-items,
etc., for the user to select from. Depending upon user interaction with any of those items,
respective contents on the page change instantaneously, maybe within fractions of a
second.

Single-page Application Architecture 3

What if Bob hovers or clicks on the girls’ footwear tab, and the website takes over 40
seconds to load the contents?

It means the website is unresponsive for a few seconds, and Bob must wait before seeing
the new content. In such a scenario, there are chances that Bob will leave the current
website myntra.com and will start looking for other websites to complete the shopping.
This response (slow) from websites will result in losing potential clients.

The above example shows that modern websites (web applications) cannot afford to keep
their clients waiting, and the webpage must be interactive throughout for the users. The
above example discusses an important quality called fluid user experience that modern
web applications must possess.

Fluid user experience
Fluid user experience for web applications can be characterized as following:

e Depending on the user interaction, however minute it may be, the web page's
contents should be loaded or changed dynamically and quickly.

e A web page should be interactive with the user throughout.

This kind of user experience expected from today’s modern web applications, is fluid
user experience. It is one of the most essential quality requirements that today’s modern
websites must support.

Once we know the fluid user experience, we can see how to achieve it.

Web applications need to generate dynamic content/views based on user interaction.
Loading another HTML page will trigger a browser refresh and require the creation of
a new Document Object Model (DOM). The process is time-consuming, and hence we
cannot afford it. It means dynamic view changes should happen on the same page. We can
achieve it through DOM manipulation. It changes the contents dynamically when the user
interacts with the page. That means no new page will get loaded in the browser, and there
will not be a browser refresh.

Now we are almost there. Let us get all the pieces together.

Single-page application architecture

Single-page application (SPA) is a web application that loads the contents dynamically
depending on user interaction without refreshing the browser throughout the application
life cycle. The user will be navigated through different logical views on the same page.

Letus compare traditional web app architecture with SPA. Figure 1.2 depicts the comparison
clearly:

4 Full Stack Development with Angular and Spring Boot

r R}
Traditional Page Lifecycle
"4 D\ s I \
Initial Request
a >
| '] HTML
Client Server
Form POST
»
< Page) HTML
Reload! <_| '7
\— S —
4
7~ N
SPA Lifecycle
S —
Initial Request
i >
|] HTML
Client Server
AJAX
r
JSON
T e
. % S

Figure 1.2: Traditional vs. SPA architecture
Source: angular.io

In the traditional approach, during initial and subsequent requests, the browser gets
refreshed with new DOM creation because the new html page is sent back as a response
from the server every time.

With a modern SPA approach, all the views/mark-ups will be sent to the client during
the initial request only, and all dynamic view generation will take place on the client side.
Here, dynamic view generation will happen through DOM manipulation, saving us from
multiple round trips to the server for subsequent dynamic views. While we are considering
client-side dynamic view generation, some questions will be arising like:

e When and for what subsequent requests will be made to the server (as view
generation will happen on the client side)?

e What about application data? Where would the application data reside?
e What will happen when data embedded in the view needs to be changed?

Let us go deep to answer these questions.

While all logical views will be sent to the client during the initial request and navigation
to different views will happen on the client side, application data will permanently reside
on the server side. When data embedded in the view needs to be changed, a request to the
server will be made. This request must be made in a non-blocking way, as the page must
be interactive with the user throughout.

Single-page Application Architecture 5

It will be an Asynchronous JavaScript and XML (AJAX) call. The request will be made
asynchronously (AJAX call) only for data, and the server will respond with data in JSON
format.

In the traditional web application development approach, there is one more issue.
Supporting rich interactions with multiple components means, those components have
many more intermediate states like:

e Menu opened.

e Menu item X selected.

e Menu item Y selected.

e Menu item Z clicked.

For all such intermediate states, server-side rendering is hard to implement. Small view
states do not map well to URLs.

Now we can specify the quality requirements to be fulfilled from a modern web application
as following:

e Ability to redraw any UI part without requiring a server roundtrip to retrieve
HTML.

e No page refresh throughout the app life cycle.
e Page to be interactive throughout.

Considering all the above points, main traits of SPA are as follows:

o Itloads all the resources required to navigate the site, on the first-page load.

e As the user clicks links and interacts with the page, subsequent content is loaded
dynamically.

e Itoften updates the URL in the address bar to emulate traditional page navigation,
but another full-page request is never made.

Now, we know that SPAs are modern web applications having the important quality of
generating dynamic views on the client side. For developing such applications, we use
JavaScript, the language that gets executed inside a browser on the client side.

JavaScript

JavaScript was originally developed at Netscape Communications by Brendan Eich in 1995.
It was first developed as a scripting language for use in the web browser. JavaScript was
not regarded as a serious programming language earlier. However, over 20 years after
its inception, it is now one of the most used cross-platform languages. Though it started
as a small scripting language for adding trivial interactivity to webpages, JavaScript has
become a language of choice for front and back-end applications of every size. As it has
come a long way and is widely used, the language has undergone many enhancements.

Let us now see what typescript is for.

6 Full Stack Development with Angular and Spring Boot

Introduction to TypeScript

TypeScript is a superset of JavaScript. It offers all the features of JavaScript and a type
system. In JavaScript, there are a few primitive types available, like a number, string,
Boolean, etc., and it is a dynamically typed language. That means we do not have to specify
the type of a variable while declaring it. Datatypes are automatically converted as needed
during the execution of JavaScript. For example, we can declare a variable as follows:

let someVal = 13; (here type of someVal is number)

And we can assign a different type to the variable someVal later as follows:
someVal = “Assigning a string value here”; (here type of someVal is string)

These kinds of assignments are inconsistent and may not be intended. JavaScript is
dynamically typed, and these assignments do not generate any error messages. However,
TypeScript will generate an error message here. The main advantage of TypeScript here
is that it can highlight unexpected behavior in your code, lowering the chances of bugs.

Typescript can be regarded as an enhanced version of JavaScript with many new features.

Visual Studio Code

For developing Angular applications, we will need some integrated development
environment (IDE). We will use Visual Studio Code which is a free editor and IDE. VS
Code is a powerful code editor that comes with built in support for JavaScript, TypeScript,
and Node.js.

Installing Visual Studio Code

Download Visual Studio Code from the link:
https://code.visualstudio.com/download

Run the downloaded executable and follow the steps to install VS Code on your machine.
After installing VS Code editor, we will go ahead with installations of Node.js, type script
and Angular CLL

Node.js

We know JavaScript gets executed inside a browser, that is, on the client side. Node.js is
an open-source and cross-platform runtime environment for JavaScript on the Server side.
Node js is built on top of the Google Chrome V8 JavaScript engine, mainly used to create
web servers. It runs the V8 JavaScript engine, the core of Google Chrome, outside the
browser. This allows Node.js to be very performant.

Installation of Node.js

Node js installation steps are as follows:

