
    i

Creating iOS  
apps with Xcode

Learn how to develop your own app

Aaron L Bratcher

                

www.bpbonline.com



ii    

First Edition 2024

Copyright © BPB Publications, India

ISBN: 978-93-55516-695

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in 
any form or by any means or stored in a database or retrieval system, without the prior written 
permission of the publisher with the exception to the program listings which may be entered, 
stored and executed in a computer system, but they can not be reproduced by the means of 
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s  
knowledge. The author has made every effort to ensure the accuracy of these publications, but 
publisher cannot be held responsible for any loss or damage arising from any information in 
this book.

All trademarks referred to in the book are acknowledged as properties of their respective  
owners but BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com



    iii

Dedicated to

My beloved wife
Pamela



iv    

About the Author

Aaron L Bratcher has over 20 years of development experience in a variety of  
programming languages and industries. After working on database applications, he 
spent a small amount of time writing web applications with Microsoft’s .Net. From 
there he found his niche in iOS programming where he has happily remained for 
over 10 years. From the day the Swift language was introduced, he strove to make 
it his primary development language. He has used it to create iOS apps for airlines, 
home automation, the hotel industry, banking, and more. He has also professionally 
used SwiftUI in multiple apps. In each organization he pushed for modernizing and 
simplifying the code. He is currently a Senior iOS Developer at JP Morgan Chase & Co. 



    v

About the Reviewers

v Edgar Nzokwe is a versatile polyglot programmer with expertise across various 
domains. His proficiency spans frontend technologies like JavaScript, React, and 
Angular, as well as backend development using Python and Java. Edgar is also well-
versed in mobile development, working with frameworks like SwiftUI, UIKit, Java, 
and Kotlin.

 In the realm of DevOps, Edgar is adept at utilizing tools such as Bitbucket pipelines, 
Jenkins, Terraform, Docker, Helm, Kubernetes, ArgoCD, and AWS to streamline and 
automate processes, ensuring efficient application deployment and management.

 Outside of programming, Edgar indulges in his love for reading, delving into books 
on philosophy, politics, and fiction during his free time. This diverse range of interests 
enriches his knowledge and fuels his creativity and critical thinking, making him a 
well-rounded and insightful professional in the tech industry.

v	Roman Zakharov is an experienced QA and Release Manager at Yousician, 
fostering collaboration with mobile app development teams to ensure smooth 
user experiences. His expertise lies in testing with Xcode and quality assurance 
within mobile application development. With an automation-based approach and 
a dedication to excellence, Roman crafts robust release processes and delivers 
high-quality apps using Xcode, Unity, JUCE, and other modern tools.

 Additionally, Roman has authored several open-source tools for iOS development, 
showcasing his commitment to the mobile development community. Beyond his 
role, he also participates as a speaker in game development and testing conferences 
across European countries.

 With a passion for ensuring flawless functionality across various platforms, 
Roman continues to make significant contributions to software engineering and 
quality assurance. His commitment to staying ahead of industry trends positions 
him as a trusted expert in the dynamic realm of mobile application testing and 
development.



vi    

Acknowledgement

This book could not have been written without the constant support of my wife, Pamela. 
It is her continued encouragement that keeps me learning and writing.

I also thank BPB Publications for their guidance and expertise in bringing this book to 
publication. The editors and reviewers helped make this the best book it could possibly be.

Finally, I thank all those who have taken an interest in this book. It is my genuine desire for 
anyone who reads this book to learn and grow in the capacity of an iOS developer.



    vii

Preface

There’s always room for improvement - this statement is a guiding light to everyone in 
the software business. It drives the industry forward as new features are added, bugs are 
fixed, or new ideas explored. It encourages hardware manufacturers to make more things 
possible than were available before. It sparks the imagination of those who wish to make 
their own software and make that glimmer of a vision come to reality.

The aim of this book is to help anyone, from the experienced professional moving to iOS 
development to the daring entrepreneur who has a bold idea on a new app, approach the 
task of iOS development with more confidence and an understanding of what it takes to 
make an app.

Starting with an overview of the deceptively easy-to-approach Swift language and moving 
on to the Apple provided way of displaying items on-screen and interacting with the 
user with SwiftUI. From there on, several concepts are introduced to give the reader the 
necessary tools to make an improvement to the world of iOS apps.

Chapter 1: Introduction to Swift – Explores the Swift programming language through the 
use of a playground, an environment that allows the quick entry of code with immediate 
feedback. We learn about variables, object types, flow control, and more.

Chapter 2: Learn SwiftUI Basics for Creating a User Interface – After reviewing the 
basics of the Xcode workspace, we learn how to create a user interface with SwiftUI 
utilizing several basic generic elements. We also take advantage of nearly instant previews, 
eliminating the old edit, compile, and run cycle for simple changes.

Chapter 3: Creating Reusable SwiftUI Views – We learn to small views that can be reused 
throughout the app, giving utility and consistency for both the developer and the end-
user.

Chapter 4: Design the Household Chores App – In this chapter we understand the first of 
the three apps; the household chores app which is used to assign chores to family members. 
Review the concept and create a project that shows the basic interface and interactions 
along with the process of localizing text and making an app accessible to all possible users.

Chapter 5: Managing Data and Assets – Building on the previous chapter, we learn about 
data models and how to organize assets like colors and icons.



viii    

Chapter 6: Creating Units of Code that can be Shared – This chapter explores the 
modularity for the separation of concerns and ease of giving distinct areas of work to 
different developers is a common developmental goal. It also covers how to create a 
module that houses specific code that can be integrated into multiple apps.

Chapter 7: Saving Data – Leverage Apple’s recently introduced SwiftData to save data 
to the local device. Also discover how to create user defaults that can be set in the iOS 
Settings app.

Chapter 8: Charting Your Progress – Learn about Apple’s Swift Charts and the variety of 
ways they can be used. Then update the chores app to chart family member’s progress on 
completing their chores.

Chapter 9: Create the New York City Schools App – The next app allows the user to see 
a list of schools in New York City along with their associated SAT scores. Create a new 
project with the appropriate interface and data structures based on the presented concept.

Chapter 10: Testing and Debugging – We learn how to ass unit and UI tests to ensure 
the app works as expected and continues to function properly as changes are made in the 
future.

Chapter 11: Networking – We learn how to download data from an internet resource 
asynchronously and parse it using Apple’s built-in libraries.

Chapter 12: Make it Public – We get familiar with the easy way of creating test users and 
publishing the app to them, and the general public.

Chapter 13: Make a Generic App – We learn how to build an app that can be branded and 
differentiated across multiple companies. We also use a modular approach to separate the 
UI and business logic and utilize asset catalogs to manage the distinct personality of each 
company.



    ix

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/szq1xtr
The code bundle for the book is also hosted on GitHub at 
GitHub Link :- https://github.com/bpbpublications/Creating-iOS-apps-with-Xcode. 
In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at  
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices to 
ensure the accuracy of our content to provide with an indulging reading experience to our 
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve 
upon human errors, if any, that may have occurred during the publishing processes 
involved. To let us maintain the quality and help us reach out to any readers who might be 
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ 
Family.

Did you know that BPB offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, 
sign up for a range of free newsletters, and receive exclusive discounts and offers 
on BPB books and eBooks.



x    

Piracy
If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or 
website name. Please contact us at business@bpbonline.com with a link to 
the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either 
writing or contributing to a book, please visit www.bpbonline.com. We have 
worked with thousands of developers and tech professionals, just like you, to 
help them share their insights with the global tech community. You can make 
a general application, apply for a specific hot topic that we are recruiting an 
author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave 
a review on the site that you purchased it from? Potential readers can then see 
and use your unbiased opinion to make purchase decisions. We at BPB can 
understand what you think about our products, and our authors can see your 
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the 
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com



    xi

Table of Contents

 1. Introduction to Swift ...................................................................................................... 1
 Introduction ....................................................................................................................... 1
 Structure ............................................................................................................................. 1
 Objectives .......................................................................................................................... 2
 Download Xcode .............................................................................................................. 2
 Time to play ....................................................................................................................... 2
 Variables ............................................................................................................................. 3
 Collections ......................................................................................................................... 5
 Optionals ...................................................................................................................... 9
 Custom types .................................................................................................................. 10
 Structs ........................................................................................................................ 10
 Enums ........................................................................................................................ 13
 Classes ........................................................................................................................ 17
 Protocols ..................................................................................................................... 22
 Closures ........................................................................................................................... 24
 Flow control .................................................................................................................... 27
 Order of operation .......................................................................................................... 29
 Conclusion ....................................................................................................................... 30
 Exercises ........................................................................................................................... 30

 2. Learn SwiftUI Basics for Creating a User Interface ...................................................... 33
 Introduction ..................................................................................................................... 33
 Structure ........................................................................................................................... 33
 Objectives ........................................................................................................................ 34
 Your first project ............................................................................................................. 34
 Interface basics ................................................................................................................ 35
 Navigators .................................................................................................................. 36
 Editing ........................................................................................................................ 36
 Project structure ......................................................................................................... 37
 Canvas ........................................................................................................................ 37
 Running your app ...................................................................................................... 38
 SwiftUI basics .................................................................................................................. 38



xii    

 The view ..................................................................................................................... 39
 Layout ......................................................................................................................... 39
	 Modifiers..................................................................................................................... 40
 Controls ...................................................................................................................... 42
 Slider .......................................................................................................................... 42
 Toggle ......................................................................................................................... 43
 Stepper........................................................................................................................ 44
 TextField ..................................................................................................................... 44
 Picker .......................................................................................................................... 45
 DatePicker .................................................................................................................. 47
 Extended content ............................................................................................................ 48
 ScrollView ........................................................................................................................ 49
 ForEach ....................................................................................................................... 49
 List .............................................................................................................................. 51
 Drawing ........................................................................................................................... 55
 Circle .......................................................................................................................... 56
 Rectangle .................................................................................................................... 56
 Rounded rectangle ...................................................................................................... 56
 UnevenRoundedRectangle ......................................................................................... 57
 Capsule ....................................................................................................................... 58
 Ellipse ......................................................................................................................... 58
 Custom shape ............................................................................................................. 58
	 Effects ......................................................................................................................... 59
 SF Symbols ...................................................................................................................... 62
 Conclusion ....................................................................................................................... 66
 Answers ........................................................................................................................... 66

 3. Creating Reusable SwiftUI Views .................................................................................... 71
 Introduction ..................................................................................................................... 71
 Structure ........................................................................................................................... 71
 Objectives ........................................................................................................................ 71
 Cards ................................................................................................................................ 72
 Plain card ................................................................................................................... 74
 Disclosure card ........................................................................................................... 76
 Text styles ........................................................................................................................ 81
 Buttons ............................................................................................................................. 85



    xiii

 Conclusion ....................................................................................................................... 90
 Answers ........................................................................................................................... 90

 4. Design the Household Chores App .................................................................................. 91
 Introduction ..................................................................................................................... 91
 Structure ........................................................................................................................... 91
 Objectives ........................................................................................................................ 91
 User interface design ..................................................................................................... 92
 Localization of text ....................................................................................................... 106
 Accessibility .................................................................................................................. 109
 Conclusion ......................................................................................................................111

 5. Managing Data and Assets ............................................................................................... 113
 Introduction ................................................................................................................... 113
 Structure ......................................................................................................................... 113
 Objectives ...................................................................................................................... 114
 Data modeling .............................................................................................................. 114
 Hashable objects ....................................................................................................... 118
 Design patterns ............................................................................................................. 119
 Builder ...................................................................................................................... 119
 Factory ...................................................................................................................... 121
 Singleton .................................................................................................................. 122
 Delegation ................................................................................................................ 122
 Step 1: Create data structs ....................................................................................... 123
 Step 2: Create a protocol ........................................................................................... 127
 Step 3: Create a singleton ......................................................................................... 127
 Memory management............................................................................................... 128
 Step 1: Adjust CommonUI to use the singleton ...................................................... 129
 Step 2: Create the delegate class in Household Chores ............................................ 133
 Assets ............................................................................................................................. 137
 Colors ....................................................................................................................... 138
 Images ...................................................................................................................... 139
 Conclusion ..................................................................................................................... 140

 6. Creating Units of Code that can be Shared  .................................................................. 141
 Introduction ................................................................................................................... 141
 Structure ......................................................................................................................... 141



xiv    

 Objectives ...................................................................................................................... 141
 Source Control .............................................................................................................. 142
 Local repository ........................................................................................................ 144
 Create a Git repository ............................................................................................. 144
 Branches ................................................................................................................... 144
 Tags ........................................................................................................................... 147
 GitHub ..................................................................................................................... 147
 Create an SSH Key ................................................................................................... 148
 Create a token ........................................................................................................... 148
 Add GitHub account to Xcode ................................................................................. 148
 Pushing CommonUI to GitHub .............................................................................. 148
 Swift Package Manager ............................................................................................... 149
 Remote packages ....................................................................................................... 150
 Local packages .......................................................................................................... 152
 Conclusion ..................................................................................................................... 152

 7. Saving Data ......................................................................................................................... 153
 Introduction ................................................................................................................... 153
 Structure ......................................................................................................................... 153
 Objectives ...................................................................................................................... 153
 SwiftData ....................................................................................................................... 154
 Deleting data ............................................................................................................ 158
 Assigning chores ...................................................................................................... 159
 Visual cleanup .......................................................................................................... 161
 Fix previews ............................................................................................................. 163
 Daily chores .............................................................................................................. 164
 User preferences ........................................................................................................... 166
 Integrating user preferences ..................................................................................... 168
 Conclusion ..................................................................................................................... 171

 8. Charting your Progress ..................................................................................................... 173
 Introduction ................................................................................................................... 173
 Structure ......................................................................................................................... 173
 Objectives ...................................................................................................................... 173
 Explore Swift Charts .................................................................................................... 174
 Bar charts ................................................................................................................. 174



    xv

 Line graphs ............................................................................................................... 176
	 Charting	different	sets .............................................................................................. 179
 Proportional charts ................................................................................................... 181
 Integrating a chart into the Chores app .................................................................... 183
 Conclusion ..................................................................................................................... 191
 9. Create the New York City Schools App ......................................................................... 193
 Introduction ................................................................................................................... 193
 Structure ......................................................................................................................... 193
 Objectives ...................................................................................................................... 193
 Interface design ............................................................................................................. 194
 Model design ................................................................................................................. 197
 Scores ........................................................................................................................ 208
 Search bar ................................................................................................................. 212
 Conclusion ..................................................................................................................... 215

 10. Testing and Debugging ..................................................................................................... 217
 Introduction ................................................................................................................... 217
 Structure ......................................................................................................................... 217
 Objectives ...................................................................................................................... 218
 Tests ................................................................................................................................ 218
 UI tests ........................................................................................................................... 218
 Unit tests ........................................................................................................................ 223
 Breakpoints .................................................................................................................... 229
 Debugger commands ................................................................................................... 232
 Logging .......................................................................................................................... 232
 Conclusion ..................................................................................................................... 233

 11. Networking ......................................................................................................................... 235
 Introduction ................................................................................................................... 235
 Structure ......................................................................................................................... 235
 Objectives ...................................................................................................................... 236
 Codable models ............................................................................................................ 236
 Decoding ................................................................................................................... 236
 Downloading data ........................................................................................................ 240
 Generics ......................................................................................................................... 242
 Async / await ............................................................................................................... 242



xvi    

 Error handling ............................................................................................................... 246
 Cleanup .......................................................................................................................... 247
 Testing ...................................................................................................................... 249
 Conclusion ..................................................................................................................... 250

 12. Make it Public ..................................................................................................................... 251
 Introduction ................................................................................................................... 251
 Structure ......................................................................................................................... 251
 Objectives ...................................................................................................................... 252
 App icon ........................................................................................................................ 252
 Using physical devices ................................................................................................ 252
 No developer accounts .............................................................................................. 254
 With a developer account ......................................................................................... 255
 App Store Connect ....................................................................................................... 255
 Preparing the app for upload .................................................................................... 255
 Test users........................................................................................................................ 258
 Submitting to the App Store .................................................................................... 260
 Conclusion ..................................................................................................................... 260

 13. Make a Generic App .......................................................................................................... 261
 Introduction ................................................................................................................... 261
 Structure ......................................................................................................................... 261
 Objectives ...................................................................................................................... 262
 Designing the app ........................................................................................................ 262
 App structure ................................................................................................................ 263
 Create target application ............................................................................................. 263
 Defining customizable options ................................................................................... 265
 Card colors ................................................................................................................ 265
 Countdown timer ..................................................................................................... 266
 Toppings ................................................................................................................... 267
 Crust ......................................................................................................................... 268
 Text ........................................................................................................................... 268
 Bundles .......................................................................................................................... 270
 Create the common interface elements ..................................................................... 271
 Card .......................................................................................................................... 272
 Progress bars ............................................................................................................ 275



    xvii

 Add button ............................................................................................................... 277
 Text style................................................................................................................... 278
 Create the primary app ............................................................................................... 281
 Data model ............................................................................................................... 281
 Order view ................................................................................................................ 283
 App utility ................................................................................................................ 284
 Order list .................................................................................................................. 286
 Foundation extensions ............................................................................................. 288
 Add order sheet ......................................................................................................... 288
 Localization .............................................................................................................. 290
 Running the app ........................................................................................................... 291
 The other app ............................................................................................................ 292
 Conclusion ..................................................................................................................... 292

  Index ..............................................................................................................................293-296
 



xviii    



Introduction to Swift      1

Introduction
In 2014, at the Worldwide Developers Conference, Apple introduced the world to the 
new Swift programming language with great fanfare. Since then, the language has been 
adopted as the premier language for creating apps not only for Apple products, but for 
servers and other platforms too. The future and direction of this language is publicly 
presented and debated. See https://swift.org for more information.

Structure
This chapter contains the following topics:

•	 Download Xcode

•	 Time to play

•	 Variables

•	 Custom types

•	 Closures

•	 Flow control

•	 Order of operation

Chapter 1
Introduction 

 to Swift



2       Creating iOS apps with Xcode

Objectives
By the end of this chapter, the reader should know the basic syntax of the Swift language, 
some commonly used types, how to create custom types, and how to manage the flow of 
how code runs.

Download Xcode
The App Store is the best place to securely download and install applications to your 
computer. After installation, launch the app. Because Xcode is used to develop apps for all 
Apple platforms, an initial set of devices to develop for must be specified. Make sure iOS 
is selected and click the Download & Install button, as shown in Figure 1.1 below:

Figure 1.1: Platform selection dialogue

Time to play
From the File menu, select New and then Playground. Select the iOS template at the top 
and the Blank Playground, then click the Next button on the bottom. Specify the location 
to save the playground and, if desired, change the name. Then click the Create button. In 
moments a screen that looks like Figure 1.2 will be shown:



Introduction to Swift      3

Figure 1.2: New Blank Playground

The playground is a great way to try some quick code without creating a full project. The 
bulk of the display is the editor. To the right, is the Live View. In the editor, two lines of 
code have been provided. For now, we will ignore the import statement at the top.

Below the import we see: var greeting = "Hello, playground"

Variables
A significant goal of programming is to manipulate the environment on the device or react 
to a change in the environment. To achieve this, the app needs to store and manipulate 
data using values and types. For instance, the value “Hello, playground” shown above 
is a string type. The var keyword declares a mutable variable called greeting. When an 
object is created and assigned to a variable, it is said to be instantiated.

On the bottom-left of the window is the execute button.  Click and hold it to see a pop-
up menu. Select Automatically Run and the screen will change. In the live view, to the 
right, the same string that was assigned, “Hello, playground” is displayed with a small 
square next to it.

   - this square is the results toggle button. Clicking it will toggle the results display in 
the editor.

On a blank line at the bottom, enter the following lines of code:
greeting = "Swift is easy"

var now = Date()

let isRunning = true

let maxLength = 256

let avgNumberOfChildren = 2.2



4       Creating iOS apps with Xcode

It may be necessary to disable the automatic running of code while typing this in. After 
all the lines of code are entered, make sure to re-enable Automatically Run or click on 
the Run button to the left of the last line of code.  When entering a lot of code, the 
second option may be best. In the live view, values that are assigned to the variables will 
be displayed. Notice how the greeting shows two values? The initial value and then the 
new one. If you hover the pointer over any of the values, the line of code responsible for 
it will be highlighted in the editor. On the right side of the value is a preview icon. Click 
the results toggle or the preview icon. For now, a repeat of the value is shown. As Swift is 
explored, this will give more information.

In the code entered, the value type was not specified. Swift will implicitly assign the type 
based on the value initially given to it. To see the type, hold down the option key ( ) 
and click on the variable name to see a more formal declaration as shown in Figure 1.3. 
Explicitly specifying the type will be shown later in the chapter.

Figure 1.3: Variable definition popover

The keyword let was used instead of var for three of the lines above. What does this mean? 
On a blank line, at the bottom of the variable declarations, try adding a line to change the 
value of isRunning to I am now running.

What happens? Figure 1.4 illustrates the error:

Figure 1.4: (Immutable variable error)

A variable defined using the let syntax makes it immutable, or constant, after a value 
has been assigned. When a variable’s value does not need to change, use let. To allow 
isRunning’s value to change, go to the declaration and change it to var.

What happens? Figure 1.5 shows an additional error:

Figure 1.5: (Variable type error)

Some languages allow the value type of a variable to be changed after it has been set. 
However, Swift is a strongly typed language, which means the value type cannot change. 
The variable isRunning is a Bool type so it can only hold the values of true or false. 
Remove the errant line of code.



Introduction to Swift      5

When the first error was displayed, a debug area was shown to give additional information. 
To show or hide this area, click the Debug area toggle button below the Live View panel. 

The names used for the variables are arbitrary. Swift convention says variable names start 
with a lowercase letter and an uppercase for concatenated words in the variable name. 
This is called camel case. In Swift, variable names can be any combination of letters, 
numbers, and even emojis. Names have these primary restrictions: They cannot begin 
with a number and must not contain mathematical symbols or white space characters, 
that is, spaces, tabs, newlines, and so on. Try it now. Change the names of the variables 
and introduce numbers in the middle or at the end of the names or try an emoji character. 
What works and what does not?

So far, we have been assigning values to variables at the time of declaration. While this may 
work in limited cases, the value is usually not known until a later time. On a blank link, 
enter these lines of code and run by either setting the playground to run automatically or 
clicking the Run button to the left of the last line of code:
let maxToppings: Int

var useBox: Bool

maxToppings = 10

useBox = false

When a value is not immediately assigned to the variable, the type must be specified at the 
time of declaration. But wait, there is more.

Collections
When deciding on the name of a variable, it is important to describe the type of value and 
what the value represents. For instance, if the name maxLength were changed to dogNames 
how would your expectations of the value change?

The first expectation is for the variable to hold String values. The second is to hold multiple 
values because of the plurality in the name. When a variable holds multiple values, it is 
called a collection. The three principal collection types in Swift are array, dictionary and 
set. Type in the following line of code on a blank line and run:
var dogNames = ["Daisy", "Caesar", "Luna"]

var dogAges = [2, 5,  7]

See how the Live View shows array of 3 elements?

Now, click on the results toggle to see the values. Try different values inside the square 
brackets. Notice how there is always a comma between each value and how the types must 
match. Use Boolean, string, integer, or floating-point numbers. Some languages would call 
these primitive types, however in Swift they are treated just like any other object type we 
will learn about later.



6       Creating iOS apps with Xcode

There are different ways of accessing the data in an array. The easiest is to use the ordinal 
position. On the line after the dogAges variable, type in: let firstDog = dogNames[0]. 
Notice that array index starts at zero.

Like any other variable, a collection can have values assigned after the declaration. Remove 
the values between the square brackets and watch what happens. An error is displayed. 
Swift does not know what type of values the variable will store. It needs to be specified 
either by the developer or by the compiler. Here, the compiler does not know what type 
to assign so you need to.

Change the line of code to look like this:
var dogNames: [String] = []

Now we have an empty array for strings. Let us explore different ways of assigning and 
removing values to this variable. Type in these lines of code and run:
dogNames = ["Daisy", "Caesar", "Luna"]

dogNames.append("Ralph")

dogNames.insert("Sparky", at: 0)

dogNames.remove(at: 1)

let sortedNames = dogNames.sorted()

Before looking at the results, what do you think each line of code does? The first and last 
lines are probably obvious, but what about the others? After giving it some thought, click 
on the results toggle button next to each entry in the Live View. Are the results what you 
expected?

Something that may be surprising is the value shown for the remove statement because it 
shows the value affected by the statement instead of the changed variable. The returned 
value is being ignored. It can be captured by changing the line to something like this: let 
removedDog = dogNames.remove(at: 1).You may have been surprised that Daisy was 
removed and not Ralph. Remember, arrays start at index zero.

In the code above for inserting, change the 0 to 5 and see what happens. We will explore 
debugging in a later chapter.

The next collection to discuss is the dictionary. It uses a unique identifier, or key, and 
associates it with a value. On a blank line, enter the following lines of code and run:
let stations = [2: "Shell", 16: "BP", 32: "Chevron"]

print(stations[2])

Like arrays, each entry is separated by a comma. Each entry consists of the key, a colon, 
then the value. The type for all provided values must match. If you are wondering why the 
print statement said Optional, then you are in for a treat. That will be discussed soon. To 
get a preview, try changing the 2 to 5.



Introduction to Swift      7

The type used for this dictionary’s key is Int, however AnyHashable type can be used. 
In fact, when declaring the dictionary variable, AnyHashable can be specified as the type. 
Change the let statement to the following and run:
var stations: [AnyHashable: String]

stations = [2:"Shell", "16":"BP", 32:"Chevron"]

The declaration specifies the key type and the value type. Later, we will look at using other 
types for the values. Notice how the keys used on the second line are now Int and String. 
Print the BP value by changing the key used in the print statement to 16. In Swift, Int and 
String are hashable types. As it is possible to make custom types hashable, they can 
also serve as keys, if desired. Most often Int and String are used as the key type.

Like arrays, dictionaries are not always populated at declaration and instantiation. Enter 
the following lines of code and run:

1. stations[55] = "Phillips 66"
2. stations[55] = "PetroChina"
3. stations.removeValue(forKey: 2)
4. let stationCount = stations.count
5. print(stations.keys)
6. print(stations.values)
7. stations = [:]

There is a lot happening here, so let us dissect it one line at a time. The first line assigns the 
value Phillips 66 to the dictionary with the key 55. The second line assigns the value 
PetroChina to the dictionary with the key 55. However, we must wonder, how is that that 
possible? Keys are supposed to be unique.

The second line replaces the value associated with the key 55. This is confirmed with the 
last print statement. Line three completely removes the key, 2, and the value associated 
with it.

The fourth line assigns the number of dictionary entries to the variable stationCount. All 
collections have the count property. In Swift, properties are variables associated with an 
object. Other helpful properties for collections are: isEmpty, first, and last.

The print statements on lines five and six above print out the keys and values properties 
respectively. Note that they are arrays. The keys and values printed may or may not be in 
the order entered because, unlike an array, a dictionary is an unordered collection. The last 
statement instantiates an empty dictionary and assigns it to the variable.

The final collection type we will cover is the Set. With the dictionary, any object type that 
is hashable can be used as the key that is associated with some data. What if we do not 
have any associated data? A situation where the key is the data, and we need a unique 
collection of these objects. This is the perfect time to use a Set. Let us try it.



8       Creating iOS apps with Xcode

Type in the following lines and run:
var partyGuests: Set<String> = []

partyGuests.insert("Aaron L Bratcher")

partyGuests.insert("Anne McCaffrey")

partyGuests.insert("Douglas Adams")

partyGuests.insert("Richard Castle")

print(partyGuests)

partyGuests.remove("Douglas Adams")

print(partyGuests)

let insertResults = partyGuests.insert("Richard Castle")

print(insertResults)

To limit the output in the Debug area, remove all code entered before or create a new 
playground. Again, we see something new in the declaration and initialization of the 
variable. A Set can hold any hashable type. Like the dictionary, the type must be specified. 
The type to be stored, in this case a String, is specified in the angle brackets. Set utilizes 
generics, a feature covered later in this book. The square brackets initialize the variable 
with an empty set.

As a Set is not ordered, the concept of appending is not logical. Instead, an object is 
inserted into the set and conversely, a known object can be removed. When an object is 
inserted, the response can be ignored, as was shown the first several times or captured. 
One could initially think the returned value of an insert would be a Bool type to indicate 
the success of the insert, however upon inspection you will find something new. Option-
click on the variable and you will see this definition:
let insertResults: (inserted: Bool, memberAfterInsert: String)

The parenthesis around two element definitions is a Tuple. Tuples can have one or multiple 
elements with, or without, a name. If a name is included, each element is like a variable 
definition. Here are two examples:

Example 1:

let someData: (String, String, String)

someData = (“first element”, “second object”, “third”)

Example 2:
var moreData: (name: String, city: String)

moreData = ("Thomas", "New York City")

moreData = (name: "Roger", city: "Los Angeles")



Introduction to Swift      9

It can be easy to forget what each value represents without a name, so names are 
recommended. However, when a name is not available, the ordinal index can be used. 
Like arrays, the index of tuple elements is zero based.

1. print(someData.1)
2. print(moreData.0)
3. print(moreData.city)

Optionals
An optional starts with a question. Does a value exist? Remember when stations [2] 
was printed earlier? The output was Optional("Shell")\n and when stations [5] was 
printed, the output was nil\n. Why? Because when an attempt to retrieve a value from 
a dictionary is performed, the key or the value associated with it may not exist. It is only 
appropriate that a question mark is used to define when a variable or property is optional. 
Here is a declaration of a variable/property that may or may not have a String value:
let crust: String?

An attempt to print the value of crust, will generate an error. An immutable optional needs 
to be initialized. In this case either with a string or nil. Nil indicates no value exists. If the 
let was to be changed to a var, then it would compile and run properly as it starts with nil 
assigned.
To properly retrieve the value, the optional must be unwrapped or coalesced to a non-
optional value. Here are a few accepted ways of doing this:
let crust: String?

crust = "thin"

if let crust {

   print(crust)

}

if var crust {

   crust = "altered crust"

   print(crust)

}

let crustType = crust ?? ""

The first option is to use the if let syntax. This checks if a value exists and, if one does, 
assigns it to a variable of the same name. This new variable is limited to the scope of the if 
statement, that is, between the curly braces. The variable can now be used safely. Outside 
of the scope, the original optional variable still exists.
The second option uses the if var syntax. It is like the first option, but it gives a mutable 
variable that can be used within the scope of the if statement. Also, while the value of the new 
variable may be changed within the scope, it does not affect the original variable or property.



10       Creating iOS apps with Xcode

The last option shown here is to coalesce. When the original variable has no value, the 
option after the coalesce operator is used instead. Multiple coalesce operators can be used 
in the same expression to chain multiple optionals together. Add a print statement to see 
what the value of crustType is. There is also the use of a guard statement, but it will be 
shown in a later segment because of how it is used.

Something not shown, because it is frowned on, however sometimes it is needed, is the 
force-unwrap operator. This will attempt to unwrap the variable and assign the value. 
However, if it fails, the app will crash. Remove the assignment of thin to the variable and 
then run the statement below and an error will appear.
let crustType = crust!

A lot has been covered for how a variable is defined and used with some built-in types. We 
have also looked at collections and optionals. These basics are used in all aspects of Swift 
development and needs to be completely understood. Try to do the following on your 
own (answers are at the end of the chapter):

•	 Create a variable that holds an array of optional strings.

•	 Create a variable that holds a dictionary with an integer key and an optional tuple 
of two strings.

Custom types
When designing an app, it is a common task to structure the data into logical units for 
storage and manipulation. In this section, the most common ways of creating custom 
types will be explored.

Structs
A struct is a way to organize naturally related data elements together and, optionally, 
provide ways of manipulating them. They are very efficient for this task. For instance, a 
pizza representation may have a struct like this:
struct Pizza {

   let crust: String?

   Let sauce: String

   let toppings: [String]

}

The key word struct specifies what kind of custom type we are creating. Notice the name, 
Pizza, is capitalized. When creating a new type, Swift convention is to capitalize the name 
of the type. When creating an instance object of the type, the variable or property starts 
with a lowercase letter.



Introduction to Swift      11

Some properties were created to describe a typical pizza. What kind of crust? Thin, hand-
tossed, cheese filled, or, maybe, none. Some sauce and toppings.

Like a string or dictionary, Pizza is now a type that can be created and assigned to a 
variable or property. The struct elements are properties that must be initialized with 
values. Swift helps us out by automatically creating an initializer for the struct so we can 
simply do this to instantiate the object:
let pizza = Pizza(crust: nil, sauce: "tomato", toppings: ["onion", "green 
pepper", "mushroom", "black olive"])

print(pizza.toppings)

This creates a Pizza object and assigns it to our variable, pizza. This could be a pizza 
bowl, where no crust exists. Like many programming languages, Swift is case-sensitive. It 
is very common to have a variable name that closely matches the type name.

There are times a coded initializer is needed. An initializer provides a point where 
parameters may be passed to make a valid object. It consists of the keyword, init, followed 
by an open parenthesis, maybe some parameters, then the closing parenthesis.

The first case, shown below, is a one-to-one mapping of the init parameters to the 
properties that need a value. Swift implicitly provides this case for simple structs. The 
parameters provided to the init can also have default values assigned. Add the init 
code so the struct looks like this:
struct Pizza {

   let crust: String?

   let sauce: String

   let toppings: [String]

   init(crust: String? = nil, sauce: String = "tomato",

toppings: [String]) {

      self.crust = crust

      self.sauce = sauce

      self.toppings = toppings

   }

}

What is the first thing you notice? That the parameter declarations look remarkably like 
the variable work done earlier. The first parameter, crust, is an optional string. A default 
value of nil is given. This would be helpful for pizza bowls where a crust does not exist. 
The default value for sauce is tomato and toppings does not have a default value so it 
must be specified when creating the object. Using this initializer, the creation of the pizza 
bowl can now look like this:



12       Creating iOS apps with Xcode

let pizza = Pizza(toppings: ["onion", "green pepper", "mushroom",

"black olive"])

The default values are for convenience but do not keep the developer from using the 
parameters. Any or all the parameters may be used for the instantiation of the pizza:
let pizza = Pizza(crust: "thin", sauce: "tomato",

toppings: ["onion", "green pepper", "mushroom", "black olive"])

The second thing to be noticed, may be the use of self. This is a reference to the one specific 
object and the items inside it. Remember when the dictionary keys were printed? The code 
referenced the keys property of the single dictionary object. The initializer is assigning 
values to the properties of self. When there is a need to reference something within the 
object itself, self is used when there is ambiguity. Otherwise, it is implied, (there is another 
use for it that will be looked at later in the book). For instance, what if the first parameter 
in init had been called base instead of crust? If that were done, then base could have been 
assigned to the crust property without use of the self designation.
Immutable properties on this struct were used. We can also use mutable properties 
that have a default value, so they are changeable from outside the struct. When all the 
properties have a default value, a second init without parameters can be created. Adjust 
your code like so:
struct Pizza {

   var crust: String?

   var sauce: String = "tomato"

   var toppings: [String] = []

   init(crust: String? = nil, sauce: String = "tomato",

toppings: [String]) {

      self.crust = crust

      self.sauce = sauce

      self.toppings = toppings

   }

   init() { }

}

let pizza = Pizza()

pizza.toppings = ["onion", "green pepper", "mushroom", "black olive"]

print(pizza.sauce)

When using a mutable, optional property, the default value is nil, so it does not need to 
be assigned. The second init function has an empty body. It is provided so an instance 
of Pizza can be created without using any parameters. Now a pizza can be instantiated 



Introduction to Swift      13

using the init with parameters or the one without. Swift will determine, automatically, 
which one to use at the point of instantiation. When you make these changes and attempt 
to run, you will get an error. Do you know why? The pizza variable is an immutable 
struct. Changes cannot be made to it. Change the let to a var on line sixteen and the 
problem will be fixed. There is so much more to structs that we will look at later. For now, 
it is time to fix another problem.

Enums
The Pizza struct uses String properties. However, each one has a limited number of 
options. When the is a known, fixed, number of options, it is best to enumerate them. Clear 
your playground of all code, except the import at the top, and add this:
enum Crust {

   case thin

   case handTossed

   case deepDish

   case none

}

enum Sauce {

   case tomato, white, arrabbiata, none

}

let crust = Crust.handTossed

let sauce: Sauce

sauce = .tomato

Like a struct, you start with your keyword enum, then the name of your custom type. 
Again, the name of the type is capitalized. See how each name assigned is singular, not 
plural. When creating a variable, you can use implicit type allocation if you give a value 
immediately or assign the type and give a value later. Notice how the full enum name 
Sauce.tomato is not required when assigning the value to the sauce variable? Swift is 
contextually aware of the Sauce type so only the specific enumeration is necessary.

It was mentioned above that a pizza may not have a crust. While an optional enum is 
possible, it is best to have an enumeration when possible. Below the Crust and Sauce 
enums, enter these lines of code and run:
enum Size: Int {

   case six = 6

   case twelve = 12

   case eighteen = 18

}


