Cloud Native Microservices Cookbook

Master the art of microservices in the cloud with over 100 practical recipes

Varun Yadav

First Edition 2024 Copyright © BPB Publications, India ISBN: 978-93-55519-603

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author's and publisher's knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete BPB Publications Catalogue Scan the QR Code:

www.bpbonline.com

Dedicated to

My beloved parents: **Krishan Kumar Yadav**

and

Manju Yadav

Your nurturing guidance and unwavering support have shaped me into the person I am today. With your love and wisdom, you have empowered me to confidently navigate life's journey and make conscientious decisions. Thank you for providing me with a foundation to stand tall and pursue my dreams.

And to my loving wife:

Neha Yadav

Your enduring companionship and intense faith in my abilities have served as my steadfast source of strength and inspiration. I express my deepest gratitude for being my pillar of support and my greatest source of joy.

About the Author

Varun Yadav, a seasoned Computer Science Engineer with nearly two decades of rich expertise spanning Enterprise Architecture, Solution Architecture, Cloud Computing, Microservices, and DevOps. Combining technical acumen with strategic vision, he holds an MBA in Information Management and Strategy, complemented by a Post Graduate Diploma in AI and Machine Learning. With a career deeply rooted in the BFSI domain, Varun has been a driving force behind innovation, actively participating in Proof of Concepts (POCs), leading Idea Generation initiatives, and igniting creativity in Hackathons. Notably, Varun believes in leading by example, having successfully helmed large-scale teams through intricate projects and endeavors. With an unwavering commitment to staying ahead of the curve in technology, he embodies a blend of expertise and foresight, consistently delivering transformative solutions that redefine industry standards. Whether forging innovative approaches or fostering collaborative environments, he stands as a beacon of excellence, guiding teams toward unparalleled success in the ever-evolving landscape of technology.

About the Reviewers

Kumar Gaurav, with over 12 years of experience in software engineering, is currently serving as an Architect at LTI-Mindtree, where he leads digital transformation initiatives. Specializing in open-source solutions and cloud-native technologies, he ensures the implementation of industry best practices in infrastructure setup, development, deployment, and monitoring for large enterprises. Kumar's expertise encompasses Kubernetes, OpenShift, Docker, Git, Java, Microservices, API Gateway, ESB, WSO2, DevOps MySQL, Linux, tool based development and more.

Certified in WSO2 & Oracle middleware technologies, Kumar excels in on-premise and cloud-based implementations, with proficiency in Amazon Web Services, Google Cloud, and Oracle Cloud. He has played a pivotal role in end-to-end project implementation and post-implementation support across various domains such as Finance, Railways, Healthcare, Power sector, and Business Intelligence.

Driven by a passion for innovation and fostering seamless communication between systems, Kumar actively seeks networking and collaboration opportunities within the realm of modern digital architecture.

Sumit Bajaj, a seasoned Engineering Leader and Integration Solution Architect with 20 years of rich experience in designing and developing software products to solve complex business problems. A creative problem solver and solutionoriented professional, dedicated to improving business operations and meeting client technical needs. With proven leadership characteristics, he drives enterprisegrade solutions from conception to completion, consistently delivering exceptional project outcomes.

Acknowledgement

I am deeply indebted to my wife, Neha, whose constant backing made it possible for me to dedicate countless hours to the creation of this book. Thank you for your patience, and encouragement, and for being my pillar of strength throughout this journey. Your love and belief in me mean everything.

I extend my sincere gratitude to all my managers who have been more than just colleagues; they have been mentors, guides, and friends. Special thanks to Marul Mehta for his invaluable support and confidence in me during the formative stages of my career, and to Rakesh Mahajan for his encouragement to embark on this writing journey. Your belief in my abilities and encouragement has been instrumental in making this book a reality.

I would also like to express my heartfelt appreciation to BPB Publications for giving me the opportunity to write this book. It has been an honor to collaborate with such a reputable publishing house, and I am grateful for the trust they have placed in me.

Preface

Welcome to the preface of this book, where I am thrilled to share my journey and passion for technology with you. From the very beginning, I have been captivated by the wonders of technology, finding immense joy in seeing my contributions come to life and being used by people. It has been an exhilarating ride dedicating my entire career to crafting and delivering technology solutions, particularly in the BFSI domain.

What drove me to write this book? Well, it is simple. I have always craved the full picture – the complete lifecycle, the entire technology stack. That burning curiosity inspired me to embark on this writing journey. This book is not just a collection of recipes; it is a meticulously planned expedition through the intricate world of designing and architecting microservices from scratch, all the way to harnessing the boundless potential of the cloud.

Think of it as your guide to launching microservices in the cloud – a comprehensive roadmap that covers every aspect, from the nitty-gritty of developing microservices to the intricacies of hosting and administrating them in the cloud. Through real-world insights and practical examples, I aim to demystify the complexities of proficient system architectures, equipping you with the tools and know-how to navigate this exciting terrain with confidence.

Chapter breakdown:

Chapter 1: Microservices and Cloud - Discover the foundational concepts of microservice architecture and cloud elasticity. Delve into the importance of Java frameworks and learn to configure cloud services and setup cloud infra for optimal performance.

Chapter 2: Developing Microservices and Test Cases - Establish a solid foundation for microservice development, starting with environment setup and the API-first approach. Explore practical examples and running code snippets to kickstart your journey.

Chapter 3: Externalize Application Configurations - Learn to externalize application configurations for enhanced flexibility and seamless deployment across different environments. Dive into Spring Cloud Config Server and Spring Actuator for efficient configuration management.

Chapter 4: Implementing Dynamic Services - Explore the need for service discovery and various approaches to achieve seamless communication between dynamically changing microservices.

Chapter 5: Containerization Using Docker - Unlock the agility and efficiency of containerization with Docker. Master the process of wrapping applications in lightweight images and deploying them to AWS ECR.

Chapter 6: Pipeline Automation for CI/CD - Streamline your development process with automated CI/CD pipelines. Discover best practices for code quality checks, test case execution, and security assessments.

Chapter 7: Microservices Orchestration - Centralize control and management of containerized applications with microservices orchestration. Learn to set up orchestrators, fetch from registries, and scale your applications seamlessly.

Chapter 8: Auto Scalability, High Availability, and Disaster Recovery - Ensure high availability and scalability of your applications in the AWS cloud. Explore strategies for disaster recovery and handle scale-out and scale-in events effectively.

Chapter 9: Cloud Security - Prioritize security considerations for your microservices in the cloud. Discover techniques to safeguard your applications using available cloud security offerings.

Chapter 10: Observability - Gain insights into the internal state of your applications with observability. Learn to set up logs, metrics, and tracing for better understanding and critical observations about the application behavior.

Chapter 11: Infrastructure Automation with IaC - Simplify infrastructure setup with Infrastructure as Code (IaC). Explore automation techniques for creating and managing infrastructure across different environments.

So, buckle up, dear reader, as we embark on this thrilling adventure together. Let us dive deep into the world of microservices and cloud technologies, and uncover the secrets to building robust, scalable solutions that stand the test of time.

Happy reading and hands-on exploring!

Code Bundle and Coloured Images

Please follow the link to download the *Code Bundle* and the *Coloured Images* of the book:

https://rebrand.ly/gah3typ

The code bundle for the book is also hosted on GitHub at **https://github.com/bpbpublications/Cloud-Native-Microservices-Cookbook**. In case there's an update to the code, it will be updated on the existing GitHub repository. We have code bundles from our rich catalogue of books and videos available at **https://github.com/bpbpublications**. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications' Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline. com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At **www.bpbonline.com**, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at **business@bpbonline.com** with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit **www.bpbonline.com**. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit **www.bpbonline.com**.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Table of Contents

1.	Microservices and Cloud	.1
	Introduction	.1
	Structure	.1
	Objectives	. 2
	Importance of microservices	. 2
	Development	. 3
	Testing	. 3
	Deployment	. 3
	Management	.4
	Importance of cloud	. 5
	Using the Java programming language	. 6
	Java frameworks for microservices	. 8
	Configuring cloud services	.9
	Recipe 1: Installing AWS command line interface	. 9
	Installing AWS CLI on Windows	. 9
	Installing AWS CLI on Linux	10
	Installing AWS CLI on MacOS	11
	Recipe 2: Creating IAM admin user	12
	Steps to create an admin user	12
	Recipe 3: Configuring IAM admin user in the AWS CLI	13
	Recipe 4: Creating an S3 bucket	13
	Creating an S3 bucket using AWS Management Console	
	Creating an S3 bucket using AWS CLI	14
	Recipe 5: Creating Postgres DB	
	Creating a PostgresSQL database using AWS Management Console	
	Creating a PostgresSQL database using AWS CLI	
	Conclusion	
	Points to remember	
	Questions	
	Questionis	1)

2.	Developing Microservices and Test Cases	21
	Introduction	21
	Structure	21
	Objectives	22
	Application description	22
	Development environment setup	22
	Recipe 6: Creating Maven projects	22
	Customer Enquiry	23
	Enquiry Broadcast	23
	Recipe 7: Enhance pom.xml files	24
	Customer Enquiry	24
	Enquiry Broadcast	26
	Recipe 8: Creating Spring Boot application class	28
	Customer Enquiry	28
	Enquiry Broadcast	29
	Running applications	29
	Recipe 9: Connecting RDS PostgressSQL instance	31
	Recipe 10: Creating database schemas	32
	Customer Enquiry	32
	Enquiry Broadcast	33
	Version control systems	33
	Recipe 11: Creating and configuring Git repositories	34
	Customer Enquiry	35
	Enquiry Broadcast	36
	Create merge request	37
	API-first approach	38
	Advantages of API-first approach	38
	Developing microservices	39
	Recipe 12: Creating database tables	39
	Customer Enquiry	40

Enquiry Broadcast
Recipe 13: Developing Customer Enquiry service
Adding dependency43
Adding application.properties
Creating RESTController
Defining financial products
Creating service classes
Creating entity classes
Creating repositories
Code compilation
Recipe 14: Developing Enquiry Broadcast service
Adding dependency57
Appending application.properties
Creating RESTController
Creating config class
Creating service class
Creating entity class
Creating repositories
Code compilation
Recipe 15: Creating unit test cases
Adding dependency67
Writing test classes
Recipe 16: Enhancing microservices for interservice communication
Adding dependency72
Service changes
Recipe 17: Running the application75
Recipe 18: Pushing the code to Git repositories77
Conclusion
Points to remember
Questions78

3.	Externalize Application Configurations	. 79
	Introduction	. 79
	Structure	. 79
	Objectives	. 80
	Application configuration	. 80
	@Value annotation	. 80
	Recipe 19: Using @Value to inject value as a parameter	. 81
	Adding a property	. 81
	Using the property	. 81
	Profile configuration files	. 82
	Recipe 20: Using profile specific properties	. 82
	Creating application-dev.properties	. 82
	Activating profile	. 82
	Externalizing configurations	. 83
	External configuration files	. 83
	Recipe 21: Using external configuration file	. 83
	Parameterizing location of Broadcast Enquiry microservice	. 84
	Externalizing Broadcast Enquiry location	. 84
	Environment variables	. 85
	Recipe 22: Using environment variables	. 85
	Command line arguments	. 85
	Recipe 23: Using command line arguments	. 85
	Configuration override order	. 86
	Version controlled configurations	. 86
	Recipe 24: Creating Spring Cloud Config Server	. 86
	Configure server Maven project	. 87
	Creating server application class	. 89
	Creating configuration Git repository	. 90
	Point Config Server to configuration Git Repository	. 91
	Accessing configurations	. 92
	Config server details in microservices	. 94

	Secured configurations	96
	Recipe 25: Integrating with HashiCorp Vault	96
	Setting up a Vault	96
	Storing secrets in a Vault	98
	Config Server with composite backend	. 100
	Dynamic configurations	. 102
	Recipe 26: Updating configurations at runtime	. 102
	Configuring Spring Actuator	. 102
	Using @RefreshScope	. 103
	Validating the solution	. 104
	Conclusion	. 105
	Points to remember	. 106
	Questions	. 106
4.	Implementing Dynamic Services	. 107
	Introduction	. 107
	Structure	. 107
	Objectives	. 108
	Importance of service discovery	. 108
	Recipe 27: Creating discovery server	. 109
	Configure server Maven project	. 110
	Creating server application class	. 112
	Configuring discovery server	. 113
	Service discovery patterns	. 114
	Client-side service discovery	. 114
	Recipe 28: Client-side discovery using Eureka server	. 115
	Registering service with Eureka server	. 115
	Service discovery and invocation	. 117
	Server-side service discovery	. 118
	Recipe 29: Creating gateway server	. 119
	Configure server Maven project	. 120

Create server application class	
Configuring routing configuration	
Configuring gateway server	
Recipe 30: Server-side discovery using Spring Cloud Gateway	
Configuring gateway server URL	
Gateway server invocation and service discovery	
Client-side versus server-side service discovery	
Service registration patterns	
Self-registration	
Third-party registration	
Conclusion	
Points to remember	
Questions	
5. Containerization Using Docker	
Introduction	
Structure	
Objectives	
Introduction to containers	
Open Container Initiative	
Docker	
Installing Docker	
Recipe 31: Installing Linux Docker Engine on Linux	
Uninstalling old versions	
Setting up the apt repository	
Installing Docker Engine	
Recipe 32: Installing Docker Desktop on Windows	
Building Docker images	
Dockerfile	
.dockerignore file	
Third-party registration pattern	
Entry point script	

	Recipe 33: Creating entry point scripts	147
	Customer enquiry entry point script	147
	Enquiry Broadcast entry point script	149
	Config Server entry point script	150
	Recipe 34: Creating .dockerignore	151
	Customer Enquiry .dockerignore	151
	Enquiry Broadcast .dockerignore	152
	Enquiry Broadcast .dockerignore	152
	Recipe 35: Creating Dockerfile	153
	Customer Enquiry Dockerfile	153
	Enquiry Broadcast Dockerfile	155
	Config Server Dockerfile	156
	Recipe 36: Build Docker image using CLI	157
	Building Customer Enquiry Docker image	157
	Building Enquiry Broadcast Docker image	158
	Building Config Server Docker image	158
	Verifying created Docker images	158
Ru	nning Docker images	158
	Recipe 37: Run Docker image using CLI	159
	Running Config Server Docker image	160
	Running Customer Enquiry Docker image	160
	Running Enquiry Broadcast Docker image	161
	Recipe 38: Entering Docker containers	161
	Entering Config Server container	162
	Entering Customer Enquiry container	162
	Entering Enquiry Broadcast container	162
Pu	shing Docker images to image registry1	163
	Repository creation strategy	163
	Recipe 39: Creating a repository in AWS ECR	163
	Creating repository using AWS Management Console	164

Creating repository using AWS CLI	
Recipe 40: Authenticating to ECR	
Recipe 41: Pushing images to ECR repository	
Pushing Customer Enquiry image	
Pushing Enquiry Broadcast image	
Pushing Config Server image	
Viewing images in the ECR repository	
Conclusion	
Points to remember	
Questions	
Pipeline Automation for CI/CD	
Introduction	
Structure	
Objectives	
Introduction to CI and CD pipelines	
Benefits of CI/CD pipelines	
GitLab CI/CD	
Pipeline terminology	
.gitlab-ci.yml file	
Runners	
Jobs	
Stages	
Building GitLab pipelines	
Recipe 42: Creating a .gitlab-ci.yml file	
Recipe 43: Viewing pipeline execution	
Recipe 44: Enhancing build stage to generate artifact	
Recipe 45: Adding a stage to generate Docker image of the artifact	
Recipe 46: Enhancing test stage to test the Docker image	
Recipe 47: Enhancing deploy stage to push the Docker image to Amazon E	CR 186
Recipe 48: Adding rules in the deployment job to only execute the job cond	itionally 188
Linting	

Recipe 49: Adding a linting stage to check code style violations	
Scheduling GitLab pipelines	
Recipe 50: Scheduling a GitLab pipeline	
Recipe 51: Using external variables to control pipeline execution	
Conclusion	
Points to remember	
Questions	
7. Microservices Orchestration	
Introduction	199
Structure	
Objectives	
Orchestration of microservices	
Benefits of orchestration platforms	
Load balancer	
AWS Application Load Balancer	
Recipe 52: Creating AWS Application Load Balancer	
Creating Application Load Balancer using AWS CLI	
Amazon Elastic Container Service	
Amazon ECS cluster	
AWS Fargate	
Recipe 53: Creating Amazon ECS cluster	
Creating ECS cluster using AWS Management Console	
Creating ECS cluster using AWS CLI	
Amazon ECS task definition	
Recipe 54: Creating Amazon ECS task definitions	
Creating Config Server ECS task definition	
Creating Customer Enquiry ECS task definition with JSON	217
Creating Enquiry Broadcast ECS task definition with JSON	221
Amazon ECS service	221
Recipe 55: Creating Amazon ECS Services	221
Creating Config Server ECS service	

	Creating Customer Enquiry ECS service	. 226
	Creating Enquiry Broadcast ECS service	. 228
	Recipe 56: Validating Application Load Balancer details	. 229
	Recipe 57: Creating target group using AWS CLI	. 231
	Recipe 58: Adding an HTTP listener to an ALB with default rule using AWS CLI	. 232
	Recipe 59: Adding a conditional rule to a listener	. 233
	Recipe 60: Validating Application Load Balancer details using AWS CLI	. 234
	Conclusion	. 235
	Points to remember	. 236
	Questions	. 236
8.	Auto Scalability, High Availability, and Disaster Recovery	. 237
	Introduction	. 237
	Structure	. 237
	Objectives	. 238
	Auto scalability	. 238
	Automatic ECS scaling	. 239
	Recipe 61: Auto scaling ECS services with target tracking policies	. 239
	Recipe 62: Auto scaling ECS services with schedule scaling	
	Handling scale-in events gracefully	. 247
	Recipe 63: Handling graceful shutdown in container	
	High availability	. 249
	Highly available database	. 250
	Recipe 64: Amazon RDS for database high availability	. 250
	Highly available ECS service	. 253
	Recipe 65: Amazon ECS for high availability	. 254
	Recipe 66: Enhance load balancer to support multi-AZs	. 255
	Disaster recovery	. 256
	Recipe 67: Configure Amazon Route 53 for disaster recovery	. 256
	Conclusion	
	Points to remember	. 262
	Questions	. 262

9. Cloud Security	
Introduction	
Structure	
Objectives	
Identity and access management	
IAM policy	
Recipe 68: Creating IAM policy for accessing S3 bucket	
IAM group	
Recipe 69: Creating an IAM user group with permissions on S3 buckets	
IAM user	
Recipe 70: Creating an IAM user	
IAM role	
Recipe 71: Creating an IAM role for accessing S3 bucket	
Data protection	
AWS Key Management Service	
Recipe 72: Creating customer managed key	
Recipe 73: Using KMS key to encrypt S3	
AWS Secrets Manager	
Recipe 74: Storing a secret in Secret Manager	
Recipe 75: Accessing secret from Secrets Manager in AWS ECS	
Recipe 76: Enhance ECS execution role to access Secret Manager	
Network security	
Virtual Private Cloud	
Recipe 77: Creating custom VPC using AWS CLI	
Recipe 78: Creating subnets in a VPC using AWS CLI	
Security groups	
Recipe 79: Creating security group using AWS CLI	
Recipe 80: Describing security group using AWS CLI	
Recipe 81: Adding a rule to a security group	
AWS Web Application Firewall	
Recipe 82: Creating Web ACL with rules	
Recipe 83: Associating Web ACL with ALB	
Conclusion	

	Points to remember	
	Questions	
10	Observability	303
10,	Introduction	
	Structure	
	Objectives	
	Observability	
	Benefits of observability	
	Logging	
	Container logging	
	AWS CloudWatch Logs	
	Recipe 84: Creating a log group	
	Recipe 85: Instrumenting applications to push logs to CloudWatch	
	Recipe 86: Viewing logs in CloudWatch	
	AWS CloudTrail	
	Recipe 87: Creating trail with AWS CloudTrail	
	Recipe 88: Viewing CloudTrail Events	
	Monitoring	
	CloudWatch Metrics	
	Custom CloudWatch metrics	
	Recipe 89: Creating a custom metric	
	CloudWatch alarms	
	Recipe 90: Creating a CloudWatch Alarm	
	Recipe 91: Triggering and viewing an alarm	
	CloudWatch dashboards	
	Recipe 92: Creating custom CloudWatch dashboard	
	Tagging	
	Recipe 93: Adding tag to S3 bucket using AWS CLI	
	Recipe 94: Adding tag to ECS cluster using AWS CLI	
	Recipe 95: Adding tag to AWS RDS using AWS CLI	
	Recipe 96: Creating cost report for production resources	
	Conclusion	
	Points to remember	

Questions	
Infrastructure Automation with IaC	
Introduction	
Structure	
Objectives	
Introduction to Infrastructure as Code	
Terraform	
Terraform lifecycle	
init	
plan	
apply	
destroy	
Terraform provider	
Terraform configuration files	
Terraform module	
Terraform state	
Getting started with Terraform	
Terraform installation	
Recipe 97: Installing Terraform	
Installing Terraform on Windows	
Installing Terraform on Linux (Ubuntu 20.04 LTS)	
Setting the environment	
Writing Terraform scripts	
Recipe 98: Creating first Terraform script	
Recipe 99: Enhancing Terraform script to create an S3 resource	
Provisioning infrastructure with Terraform	
Recipe 100: Executing Terraform script to provision an S3 resource	
Importing existing infrastructure in Terraform	
Recipe 101: Importing S3 bucket resource in Terraform	
Conclusion	
Points to remember	
Questions	
Index	

CHAPTER 1 Microservices and Cloud

Introduction

This is an era in which all greenfield application developments are done using microservice architecture, and going cloud is the strategic direction every organization is moving towards.

In this chapter, we will learn the importance of microservice architecture and how cloud elasticity is the go-to technology for leveraging the maximum benefits out of a microservice and the importance of Java frameworks in building enterprise grade microservices.

Structure

In this chapter, we will discuss following topics:

- Importance of microservices
- Importance of cloud
- Using the Java programming language
- Java frameworks for microservices
- Configuring cloud services

Objectives

By the end of this chapter, we will learn the benefits of developing an application using microservice architecture compared to a monolithic architecture, as well as the features provided by cloud infrastructure and how they overcome the challenges that are present in the on-premise deployments. We will also learn the importance of Java as a programming language for developing enterprise grade software applications, the Java frameworks available in the market for developing microservices and why Spring Boot is the most preferred option amongst them. In the end, we will learn how to configure different AWS services that will be required to begin the development of the microservices discussed in detail in later chapters of this book.

Importance of microservices

Microservices have evolved to overcome the issues and challenges faced by the monolithic applications, be it in any phase of the software development lifecycle, development, testing, build, deployment, or maintenance. Although microservices require some extra efforts, they provide many advantages in the larger extent.

The word **micro** means granular, that is, breaking the complete large requirement into small parts and then developing, building, and deploying them as services independent of each other, eventually orchestrating them in tandem to fulfill the complete business requirement. Here, granularity is a subjective term and how granular a service should be, is dependent on case-to-case basis and on the actual business functionality. In most of the cases, the functionality that is subject to change together in the future, should be part of the same microservice.

Figure 1.1 illustrates the difference between a monolithic application and microservices:

Figure 1.1: Monolithic versus Microservices

The benefits of developing an application using a microservice architecture compared with the overwork that needs to be done in different phases of **software delivery life cycle (SDLC)**, are explained as follows.

Development

The benefits and overwork in the development phase are as follows.

Benefits:

- Every microservice can be developed independently of each other.
- Different teams can work together to develop different microservices.
- If required, the microservices can be developed using different technology stacks.

Overwork:

• Multiple code repositories are to be created and maintained, one for each microservice.

Testing

The benefits and overwork in the testing phase are as follows:

Benefits:

- Every microservice can be independently tested by the testing team.
- Test cases can be easily created, since the scope of a microservice is limited compared to the complete functionality.

Overwork:

- Separate integration tests are to be created to test the overall business functionality.
- Multiple test environments might have to be created, if required.

Deployment

The benefits and overwork in the deployment phase are as follows:

Benefits:

- Build pipelines are simple and can be created independently for each microservice.
- Can leverage container and cloud infrastructure.
- **Independent Infrastructure as Code (IaC)** scripts can be created, which are simple and can reuse common templates.

Overwork:

• Microservices need to be carefully version controlled to resolve the interdependence on each other.

• Complex orchestration is required to build coordination between multiple microservices.

Management

The benefits and overwork in the management phase are as follows:

Benefits:

- Individual microservices can be upgraded or modified without impacting other services.
- Easier to debug and troubleshoot.
- Application health can be monitored at a microservice level.

Overwork:

• As more than one instance of each microservice can be live at a time, there is a need for complex observability patterns to get the complete insight of the whole application.

Additional advantages of application development using microservice architecture are:

- The design is highly scalable, and more microservices can be easily added later if required.
- Faster time-to-market as microservices are be independently developed, tested, and deployed and the activities can be done in parallel.
- A microservice can be shared with different business modules, which makes it reusable.
- An individual microservice can be scaled in case of heavy load, without impacting others, which has a straight cost and performance benefit.

Thus, the benefits of a microservice architecture are huge compared to the overwork that is required to be done.

It is crucial to acknowledge that adopting a microservices architecture introduces new complexities. Communication between microservices becomes paramount, necessitating the implementation of robust and efficient mechanisms such as REST, gRPC APIs or message queues. Monitoring and managing the entire ecosystem of microservices demand more sophisticated tools and strategies such as service mesh In conclusion, the microservices architecture is a powerful paradigm that addresses the limitations of monolithic applications. It promotes flexibility, scalability, and agility in software development. While it does present additional challenges, the benefits it provides, especially in handling large and complex systems, make it a preferred choice for modern application development.

Importance of cloud

Going cloud is the new norm; every agile company is either migrating their applications to cloud or building new applications in a cloud native way. Adopting cloud allows the enterprises to focus on their core competencies or businesses without bothering about any of the following:

- Hardware infrastructure
- Software licenses
- Security
- Patching
- Backups
- Disaster recovery, and so on.

Everything is taken care of by the cloud provider.

Apart from offloading the preceding tedious and tardy activities from the shoulders of an enterprise, cloud infrastructure provides them with the flexibility to choose from various options of compute and services, depending on their business needs and workloads. In return, enterprises also save costs, as they are only paying for services as per their usage, and there is no need to incur huge costs during off business hours or at the time of lean workloads.

There are multiple cloud providers in the market. Following are the ones that have majority of the market share:

- Amazon Web Services
- Microsoft Azure
- Google Cloud
- Oracle Cloud

Figure 1.2 features some of the cloud provider options:

Figure 1.2: Cloud providers