C++
Cookbook

How to write great code with the latest C++ releases

Wayne Murphy

www.bpbonline.com

ii

First Edition 2024
Copyright © BPB Publications, India
ISBN: 978-93-55515-377

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in
this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete E E

BPB Publications Catalogue
Scan the QR Code: E

www.bpbonline.com

iii

Dedicated to

My family and friends
who have supported me,
during this book, and for everything else.

and

My managers at work that believed in me

ever since I first started working in software,

and those along the way.
Thanks Murray, Ed, Shane, et al.

iv

About the Author

Wayne Murphy grew up in Brampton, Ontario, Canada. Graduating from Sheridan
College in town. He started work at his first programming job in 1987, and over the years
been at many companies, in several different roles, with various technologies. For most of
the past 20 years, Wayne has been consulting in his company, Great Leap Forwards Inc.
When Wayne is not at work, he is working on some of his own code, and spending time
with his family.

About the Reviewers

Maxim Chetrusca is a Software Engineer with almost a decade of professional
experience in C++. Throughout his career, he focused on real-time, latency sensitive
systems. During his work, he used C++ for the backend of the busiest websites,
distributed databases as well as squeezing microseconds from high frequency
trading systems. A firm believer of C++ philosophy, he had the chance to use the
language versions ranging from 03 to 20 in production, running the code on 4
different platforms. Outside of working hours he spends time learning about new
car models with his 2-year-old son.

Kris Jusiak is a passionate Software Engineer with experience across various
industries, including telecommunications, gaming, and most recently, finance. He
specializes in modern C++ development, with a keen focus on performance and
quality. Kris is also an active conference speaker and open-source enthusiast, having
created multiple open-source libraries.

Chetan Sachdeva is a Tech Enthusiast, with over 13 years of expertise in C++ and
Python in software development. With a dynamic career spanning Automotive,
AR/VR, IoT, Android native development, Typography, and Printing RIP. His true
passion lies in solving complex problems with data structures and algorithms. His
entrepreneurial spirit has led to the successful design of software and products for
startups. Beyond his professional endeavors, Chetan is an avid reader of non-fiction
and IT-related books, staying at the forefront of industry trends.

vi

Acknowledgement

I remember that warm summer day in the mid-1970s, when my father’s father told me You
should get into computers, and me not knowing what one was. I remember my dad taking
me into his work, because they just got their first computer there. I later recall when my
parents got us our first family computer, I thought to myself, I will never be bored again. 1
have to thank them for that, because I have not been bored yet.

I am very grateful to all those publishing material (books, web-pages, videos) in the goal
of wanting people to learn what they know. I hope I have done your efforts justice.

My gratitude also goes to the team at BPB Publications, for giving me a chance to do this.

vii

Preface

C++ Cookbook walks you through all the recent new features. In a cookbook-type style
that talks about each new class or function, it shows you in simple terms how to use it.
Authored by a software professional, with over 3 decades of experience, their passion for
coding shows in the book. This book takes the reader on a tour of what they will need to
know to be up to date with the latest C++ abilities.

The book outlines new features, with lots of code examples. They can use it as a reference
guide, or progress through each how-to recipe to maximize their knowledge. Sometimes it
will give suggestions on the best approach, but mainly wants to inform you of options, and
lets you take the right path for your individual situation. The book should help those that
have not kept up to date with recent C++ releases. Whether your company was sticking
to an older standard, or you are starting with a new product. There are a lot of great
new features available, and this book will help you working with the latest and greatest
functionality. You can walk through all the chapters with their code examples, or use it as
a quick-reference guide for something specific.

After reading it, you will be up to date and will make you and your project work better.

Chapter 1: Working with Concepts — It defines what a concept is, how to use one, and
how to create your own. It discusses the different styles how concepts are defined;
whether creating a single constraint on a variable or a function, making a requires clause,
or combining concepts to make a conjunction or compound requirement.

Chapter 2: Using the New Core Language Concepts — The chapter initiates a long journey
to learn what existing concepts are included in C++. There are concepts for comparison,
assignment, checking on the type, and hierarchy.

Chapter 3: Using the New Comparison Concepts — The chapter continues delving into
predefined concepts. We look at those relating to equality, and comparison.

Chapter 4: Using the New Iterator Concepts — Our next step into concepts looks at all of
the concepts defined for iterators, and also talks about the progression of functionality with
types of iterators. We also touch on some other concepts relating to moving or copying
values.

Chapter 5: Using the New Object Concepts — We pick up where we left off, talking about
concepts relating to the constraints of moving or copying values. We also discuss the
similarities and differences between the concepts semiregular and regular.

viii

Chapter 6: Using the New Callable Concepts — We will talk about concepts relating
functions, or other mechanisms that we can call to execute some code.

Chapter 7: Const Related Specifiers — With this chapter, we end our lengthy talk about
concepts and discuss specifiers relating to defining what is constant. We go over previously
existing specifiers, and talk about newer ones that will help your code be more efficient.

Chapter 8: Concurrent Processing — The chapter discusses threads, callbacks, and different
ways for your code to be executed safely by different threads at the same time.

Chapter 9: Coroutines — The chapter presents a new mechanism for executing code. We
get into the details of the parts of a coroutine, how to create them, and how to use them.

Chapter 10: Organizing Your Code with Modules — The chapter covers a great new
addition to the language. Modules will help you organize your code easier. We get into the
details of its components and go through how to using other modules, and learn how to
write our own code.

Chapter 11: Introduction to Ranges and Views — The chapter starts discussion about what
ranges, views, and spans are. The differences between them, and how to use them are
discussed. Since ranges relate to concepts, we will talk about some of the existing range
concepts.

Chapter 12: Range Access and Non-Modifying Sequence Functions for Ranges — The
chapter continues to discuss ranges, and some of the functionality relating to subranges,
sizes, iterating, and comparing.

Chapter 13: Range Algorithms: Sort, Search and More — The next leg of our journey talks
about ranges deals with searching and sorting. We can perform functions on a range to get
a value, or even a new range by doing a permutation.

Chapter 14: Range Algorithms: Memory and Modification Functions — We focus on
memory; moving values around, and doing transformations.

Chapter 15: Views and Range Adaptors — The chapter talks about the many functions that
exist so we can get values in a view by calling a range with an adaptor.

Chapter 16: Range Factories and Utilities — We conclude our talk about ranges by showing
some exiting new functionality. We can create an infinite view of values, whether by using
a simple function or a generator. There is code showing how to even format your range
for output.

ix

Chapter 17: New Features for Containers — The chapter covers a lot of ground, dealing
with new container types, and simple new functions.

Chapter 18: Making it Easier to Code — There are a number of new features discussed that
you will be happy to see such as easier output, new enhancements for strings and ranges,
plus an easier way to use enums and bits. There is also new types for dates, times and time

zones.

Chapter 19: Making Your Code Cleaner — The chapter covers many recent features for
lambdas, new suffixes, optional and expected arguments, plus new preprocessor directives
for cleaner code.

Chapter 20: Making Your Code Safer — The chapter touches on some important new
features to make code less fragile.

Chapter 21: Making Your Code Faster and Easier to Debug — We conclude by talking about
ways to make your code run faster; including some new functions, and new attributes. We
also talk about new types that could help you debug your code.

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/de3g86d

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/C-Plus-Plus-Cookbook.

In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to en-
sure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes in-
volved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical articles,

sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

xi

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xii

Table of Contents

1. Working with Concepts 1
INEPOAUCHION ..ot 1
SEIUCKUTE ..ot 3
ODJECHIVES ... 3
Recipe 1.1: Creating your first CONCePtccceveiiiiiiiiiiiiiiccccc e 3
Recipe 1.2: USINg @ CONCEPL ..ooviiiiieiiiiiniiiiniiiciccc s 4

SUGGESHION .ttt 5
Recipe 1.3: Creating a cONStraint..........ccoovueviviiiiiininiiiiincns 6
Recipe 1.4: Creating a CONJUNCHON.......cciiiiiiiiiiiciicccc e 6

SUGGESLION .t 7
Recipe 1.5: Making a requires clause...........ccccceuiiiiiiiiiiiiiniiiniincccccccnnes 8
Recipe 1.6: Constraining a function...........cccccovviiiiiiniiiicces 9
Recipe 1.7: Creating a requires eXpreSSionccceeeieiiinieinieieiscenee e 9
Recipe 1.8: Multiple requires @Xpressions ... 10
Recipe 1.9: Nested reqUirements...........ccccocvveviiiiiiiiiiiiniiccccc e 11
Recipe 1.10: Function templates............cccoviiiiiiiiiiiiiiiiicccccns 11
Recipe 1.11: Compound reqUirementsccoeeueiiiininininininccceeeccces 13
Recipe 1.12: Different types of eXpressions ... 13
Recipe 1.13: Specializationscccccciiiiniiiiiiiicc e 14
CONCIUSION ..ottt 17
Points to reMeMDET ..o 17
REfEIONCES.......ouiiiiiictctiiei s 17

2. Using the New Core Language Concepts 19
INErOAUCHION ..ottt 19
SEIUCKUTE ..ot 19
ODJECHIVES ... 20

Recipe 2.1: SAIME_AScuoiiieiiiiieiciiietcieete ettt 21

Recipe 2.2: convertible_to ... 24
Recipe 2.3: derived_from ... 26
Recipe 2.4: integral, signed_integral, unsigned_integralccccoeovnniiiinnnnns 31
Recipe 2.5: floating_point.........cccocoeiiiiiiiiniiic e 32
SUGGESHION .ttt 34
Recipe 2.6: assignable_from.............ccccciiiiiiiiiiiiiii e 34
SUGGESHION .t 36
Recipe 2.7: swappable..........ccoviiiiiii e 36
Recipe 2.8: destructible ... 38
Recipe 2.9: constructible_fromcccovviiiiiiiiiii e 41
Recipe 2.10: default_initializablecccoooriiiiiiiiiiiiic e 43
Recipe 2.11: move_constructible, copy_constructible............cccccocovvviiniiiiiiiiiinns 46
Recipe 2.12: common_with and common_reference_withcccccovccvivecnccnnce. 51
CONCIUSION ..ottt 54
Points tO reMEeMDET ..o 54
REfEIONCES.......ouieieiiitcteiiet s 54
3. Using the New Comparison Concepts.... 55
INETOAUCHON ..ot 55
SEIUCKUTE ..ot 55
ODJECHIVES ..ot 56
Recipe 3.1: equality_comparable ..o 56
Recipe 3.2: equality_comparable_ with ..o 60
Recipe 3.3: totally_ordered ..o 60
SUGGESLION .ttt 63
Recipe 3.4: totally_ordered_with ..o 64
Recipe 3.5: three_way_comparablecccoieuiiiiiiniciieiiceceeceeeceneeenes 64
SUGGESHION .ttt 67
Recipe 3.6: three_way_comparable with custom typesccccoeuvuviccieirceericierneenee 68
SUGGESHION .ttt 78
Recipe 3.7: three_way_comparable_with ..o 78

CONICIUSION .ttt ettt ettt e et e e et e e e e et e e s eaaeeseateessnseeesastessasssesssaseesesaseesssaessnnsees 81

Xiv

PoINts t0 TEMEMDETc.cuiuiiiiiiiiic e 81
RefOIONCES......eiiiiiiiiiiicc 81
4. Using the New Iterator Concepts 83
INErOAUCHON ..o 83
SEUCHUTE .o 84
ODJECHIVES ...t 85
Recipe 4.1: weakly_incrementable...........ccooeiiiiiiiiiiiiiicce 85
Recipe 4.2: input_or_output_iteratorccoeiviiiiiiiiiiiii 87
Recipe 4.3: sentinel_for.........ccooviiiiiiiiiiiiicc e 89
Recipe 4.4: sized_sentinel_for............cccciviiiiiiiiiiiics 91
Recipe 4.5: indirectly_readable.............cccoooviiiiiiiiiiiiiiiiie 92
Recipe 4.6: indirectly_writable ..., 92
Recipe 4.7: incrementable.............ccooiiiiiiii e 92
Recipe 4.8: INput_Iteratorcccceivviiiiiieiiiiiccc s 93
Recipe 4.9: output_teTatOr.........ccooviiiiii 93
Recipe 4.10: forward_terator ... 93
Recipe 4.11: bidirectional_iterator...........cccocoveueiiiiiiiiiiiiicc e 96
Recipe 4.12: random_access_iterator.........cccooiiiiiiiiiiiiiiiiniiccccc e 98
Recipe 4.13: contiguous_iteratorcocveveiiiieiiic 103
Recipe 4.14: indirectly_movable, and indirectly_movable_storable........................... 108
Recipe 4.15: indirectly_copyable, and indirectly_copyable_storable......................... 109
Recipe 4.16: indirectly_swappable..........ccccccooiiiiiiiiiiii 109
Recipe 4.17: indirectly_comparable...........cccooeiiiiiiiiiiiiiiicccce 109
Recipe 4.18: permutablecccccoiiiiiiiiiiii e 109
Recipe 4.19: METEabIEc.covuiuiiiiiiiiccc e 110
CONCIUSION ...t 110
Points to TeMEMDETcccciiiiiiiiiiiiicii e 110
RefOINCES......oeciiiiiiicicc e 110
5. Using the New Object Concepts cererenenenenenensnnas 111
INErOdUCHON ... 111

o] 8 40 o n 0 54 <IN SS TR S ST SRRRRTPPRRRRRN 111

X0

ODJECHIVES ...ttt 112
Recipe 5.1: MOVADIE ..o 112
SUGGESHION ..t 112
Recipe 5.2: copyable.......coiiiiiiiiii e 118
Recipe 5.3: SemMiregular..........cccoviuiiiiiiiiiiiiiccc e 120
Recipe 5.4: TOGUIATcoiviviiiiiiicc e 122
CONCIUSION ..ot 124
Points to 1eMEeMDETc.ciiiiiiiiiiiicc e 124
REfEIENCES.......oviiiiiiiiiicc e 124
6. Using the New Callable Concepts reereeesaeeneaeaeenes 125
INErOAUCHON ... 125
SEIUCKUTE ..o 126
ODJECHIVES ...ttt 126
Recipe 6.1: iNVOCabIe.........ccciiiiiiiii e 127
SUGGESHION .ottt 131
Recipe 6.2: regular_invocable............ccccciviiiiiiiiiiiiii e 131
Recipe 6.3: predicate ... 133
Recipe 6.4: relation and equivalence_relation...........cccccooeiiiiiiiiiniiii, 134
Recipe 6.5: strict_weak_Order ... 134
Recipe 6.6: indirectly_unary_invocable, and indirectly_regular_unary_invocable. 135
Recipe 6.7: indirect_binary_predicateccccccoeeiiiiininiiicce 136
Recipe 6.8: indirect_equivalence_relationcccccooviiiiiiiiii, 136
Recipe 6.9: indirect_strict_weak_orderccccccoiinniiiiiiiiiiii, 137
CONCIUSION ..o 137
Points to TeMEMDETcccciiiiiiiiiiiiicii e 137
RefOIONCES......viiiiiiiiiicic 137
7. Const Related Specifiers S 139
INErOAUCHON ..o 139
SEUCHUTE .o 139
ODJECHIVES ...t 141

Recipe 7.1: Looking at the constexpr enhancementsccccoccuviricciniciniiniccnicines 141

Recipe 7.2: constexpr for transient allocationccocoveeeininiiiiiccicnccs 150

Recipe 7.3: conSteval........ccciiiiiiiiiiiiiiiic e 153
Recipe 7.4: CONSHNIL ...oviiiii 157
Recipe 7.5: CONSLEXPI ifoviuiiiiiiiicicciic e 160
Recipe 7.6: if CONStEVAL........cccriiiiriiiiiiccc e 166
Recipe 7.7: Some hidden problems with cONSteXprcccceuviicuiicicniniciriiceee 173
CONCIUSION ..ottt 175
Points to TeMEeMDETc.cooiiiiiiiiiiiiic e 175
REfEIONCES.......oiuiiiiciiiii 175
8. Concurrent Processing ceseeenenenneanens 177
INErOAUCHON ... 177
SEIUCKUTE ..o 177
ODJECHIVES ...ttt 178
Recipe 8.1: std:jthread is the new threadc.cccoceiviiiiiiiiiccce 179
Recipe 8.2: std::StOp_tOKEN......ccuiuiiiiiiiiiiicicc e 190
Recipe 8.3: std::stop_callback ... 193
Recipe 8.4: std::StOP_SOUICEucuvviiiiiiicicici e 196
Recipe 8.5: std::counting_semaphore, and std::binary_semaphore...........c.ccccccceec.... 200
Recipe 8.6: std::atomic<std::shared_ptr>, and std::atomic<std::weak_ptr>.............. 204
Recipe 8.7: std::atomic<T>::wait, and std::atomic<T>:notify™.........cccccoovririennnnnnn. 207
Recipe 8.8: std:latChc..cuvuiiiiiiiiciic 210
Recipe 8.9: std:barrier ... 211
Recipe 8.10: std::atomic_refcovviiiiiiic e 214
CONCIUSION ..ot 216
Points to reMEeMDET ..o 217
RefOINCES......ovieiiiiiiiciccc 217
9. Coroutines..... v saeaens 219
INErOAUCHON ..o 219
SEIUCHUTE ..ot 220
ODJECHIVES ...t 220

Recipe 9.1: What is @ COTOULINEccuiuiiiiiiiciiiciciictc e 221

Recipe 9.2: Components of a coroutine: The promise...........ccccoeucuviurivciricininiccnicines 224
Recipe 9.3: Components of a coroutine: The state, and the handle. 227
Recipe 9.4: Coroutine reStrictionscoovvveveiiiiiiiiiiiccc e 242
Recipe 9.5: GENETatOrs ...t 244
CONCIUSION ..ottt 248
Points to reMemMDETc.cooiiiiiiiii 249
REfEIONCES.......ouiuiiiiiiiicii e 249
10. Organizing Your Code with Modules..... reereneeereereneaeenes 251
INErOAUCHON ..o 251
SHUCEUTE .. 251
ODJECHIVES ...ttt 252
Recipe 10.1: What is @ MOAULE........c.covimiiiiiiiiciiicccecceece s 252
Recipe 10.2: What the compiler does with a module...........cccccvvciviiiiiinicininininicines 260
Recipe 10.3: How to use a module..........cccoovriiiiiiiiiiiniiiiiccce 261
Recipe 10.4: Visibility and reachabilityccccooeuviiiiiiiciniiiciiciciccccccc 266
Recipe 10.5: Layout of a module..........c.cccooiiiiiiiiiiiiiiiiccces 268
Recipe 10.6: Cyclical modulescooviiiiininiiiiiiiiccccece e 271
Recipe 10.7: Importing the standard modules.cccccoeuviiiniiniiiniciicee 273
Recipe 10.8: What are module partitions.............cccceuecunicininincinicininicniciicceeeines 274
CONCIUSION ..ottt 275
Points to reMeMmMDETccooiiiiiiii e 275
REfEIONCES......ooieieiictiicii e 276
11. Introduction to Ranges and Views ceeeeeeeeneneneane 277
INErOAUCHON ..o 277
SEIUCHUTE ..ot 277
ODJECHIVES ... 278
Recipe 11.1: What iS @ FANGEcccuciuriiiiiciiiiciiciciieiciicictsi s 278
Recipe 11.2: What 1S @ VIEWc.cuiiuiiiiciiicieiiceiccece e saes 281
Recipe 11.3: What iS @ SPar.......cccciiiiciiiciiiiciiiciciice s 282
Recipe 11.4: RaNge CONCEPLScevviveriieiiriiiiciicticetccetc e 284

Recipe 11.5: Range primitives..........cooiiiiiiiiiiiic e 287

xX0Uiii

Recipe 11.6: What is @ SUDTANgeccccevuciiiiciiiiciiiiciiciiccciccscscesiecniaans 287
Recipe 11.7: What is ranges::dangling...........cccccceveiueuriiieuniccininiericceeeneecenenenes 289
Recipe 11.8: What is a view_interfaceccccceeuviuriccinicininiciiicicscscsciecencnans 292
Recipe 11.9: What is an OWNING_VIEWccceuviiuiiiiiiiiiiiieiicieiieeeeceseceeneeeseneneaens 295
CONCIUSION ..ottt 295
Points to TeMEeMDETccooiiiiiiiiiiiicc e 295
REfEIONCES.......ouiuiiiiiiiicii e 295
12. Range Access and Non-Modifying Sequence Functions for Ranges..........ceeucuc.. 297
INErOAUCHON ..o 297
SEIUCKUTE ..ot 297
ODJECHIVES ...ttt 298
Recipe 12.1: Review the basic range access functions...........ccceceeeuveeccvrenicrrinicrnenenen 298
Recipe 12.2: The for_each functionscccccvicuviiriciniciniiiciniccececscceeeeaes 303
Recipe 12.3: Looking at count, any_of, all_of, and none_of functions....................... 306
Recipe 12.4: Looking at comparison functionsccceceeeeunininininccncceecccnns 310
Recipe 12.5: Search functionalityccccoccceuviiiiiiiiiiniiiicceecccecceeaes 314
CONCIUSION ..ot 327
Points to TeMEeMDETccooiiiiiiiiiiiicc e 327
REfEIONCES.......oiuiiiiiiiicii e 327
13. Range Algorithms: Sort, Search and More reereeesrenesneaeaeenes 329
INErOAUCHON ..o 329
SEIUCKUTE ..o 329
ODJECHIVES ...ttt 330
Recipe 13.1: Minimum and maximum functions ..., 330
Recipe 13.2: Sorting and partitioning functionsc.ccceeeveniniiiniicnccceiccns 334
Recipe 13.3: Binary search functions, and set functions............ccccceeecuvenicirnicunnnnee. 342
Recipe 13.4: Permutation functions..........cccoceeueiiiniiiiiiicciccccccceccnee 347
Recipe 13.5: Fold functionscccceiiiinininiiiciiccccc e 351
CONCIUSION ..ottt 353
Points to TeMEeMDETccooiiiiiiiiiiiic e 353

REEICIICES. ...ttt e et e e et e s e st e e s seaaeesssaaeesaateessaaessanssesssnseesanns 353

xix

14. Range Algorithms: Memory and Modification Functions .. v eaeaens 355
INErOdUCHON ..o 355
SEUCHUTE .o 355
ODJECHIVES ...t 356
Recipe 14.1: Heap fUnCtioNS..........ccoeveiiiiiicicieiecccccc e 356
Recipe 14.2: Uninitialized memory functions...........cccccoveeiiiiiiiiinicciins 360
Recipe 14.3: Modifying sequence functionscccoceereeininininininiccnceecccaes 361
CONCIUSION ..ot 376
Points to TEMEMDETcciiiiiiiiiiiiiici e 376
RefOINCES......vviiiiiiiiitcc e 377

15. Views and Range Adaptors....... cererenerenensseeaens 379
INErOAUCHON ..o 379
SEUCHUTE .o 379
ODJECHIVES ... 380
Recipe 15.1: Progressing from views and ranges, to range adaptorsccccceu.e. 381
Recipe 15.2: Some simple range adaptors ... 382
Recipe 15.3: Using take() and drop() adaptorsccccccuvirivcinicininincinicinicicsicines 385
Recipe 15.4: Using range adaptors with compositionccccceuveeccivnicirinccininnnen 387
Recipe 15.5: Using filter() and transform() adaptors.........c.cccceevvinicciccininnnninccenas 389
Recipe 15.6: Working with the join() and split() adaptors.........c.ccceeeevvvicirinicrnennee 392
Recipe 15.7: Working with the keys() and values() adaptorsccccccoecccuviciccinicnnes 395
Recipe 15.8: Using chunk() and slide() adaptors..........ccccceuecueuvevicuvinicrncnicininiceann 397
Recipe 15.9: Using zip() adaptor........ccceuviiiiiiiiiiiiiiiniiicccccc s 403
Recipe 15.10: A quick 100K at reVerse()........cccvuiururiiururiiieiricieiiieeiceecceseeceeeeaes 404
Recipe 15.11: Looking at special adaptors.............ccocevverrrieininininiiicccccecccccccnes 405
CONCIUSION ..ot 408
Points to TeMEMDETccoiiiiiiiiiiiiii e 409
RefOIeNCES......oviiiiiiiiic 409

16. Range Factories and Utilities - - - crereeeneneneeneneaeans 411
INErOAUCHON ..o 411

1] 8 B ol n 0 54 < I SETRURTORRRRRRROPPRRRRRRROt 411

XX

ODJECHIVES ...ttt 412
Recipe 16.1: Factory overview, and the ranges::iota_view factoryccccecccuvuee. 412
Recipe 16.2: The views::repeat, and views::cartesian_product............cccccccuvvueuecuriucnnes 415
Recipe 16.3: Creating your range factory..........ccccocoeiviviniiiniiiiiiciiiincccccnes 416
Recipe 16.4: Formatting rangescocoeeveieiiciiiiiiiicce 417
Recipe 16.5: SWapping rangescccccciiviniriiiiiiiiiiii e 420
Recipe 16.6: The utility ranges:itoccoceiiiociiiciiiiriciiiiieececsceesciecesias 424
CONCIUSION ..ottt 425
Points to reMeMmMDETc.cooiiiiiiii e 425
REfEIONCES.......oieieiectciiet e 426
17. New Features for Containers..... sssssssasasususessessnten 427
INErOAUCHON ..ottt 427
SEIUCHUTE ..o 427
ODJECHIVES ...t 428
Recipe 17.1: CONtAINS. ..ottt 429
Recipe 17.2: Looking at std::span...........ccviiiiiiiiiicccce 431
Recipe 17.3: std::counted_iterator...........cooceurueieiiiiiiiniiiicccccccc e 432
Recipe 17.4: std::iis_bounded_array and std::is_unbounded_array.........ccccceueuunne 435
Recipe 17.5: std::to_array converts to std:arraycccococeeeeenniniiiicccceeeccccnes 436
Recipe 17.6: std::erase and std::erase_if ..., 438
Recipe 17.7: std::flat_map and std::flat_set...........ccoovrriiiniiii 440
Recipe 17.8: Iterators pair constructors for stack and queue.............cccccceiiiiiiininnnns 441
Recipe 17.9: Allow default arguments for pair’s forwarding constructors............... 442
Recipe 17.10: The push_range() function for queue, stack, and priority_queue 443
Recipe 17.11: What is std:mdSpan..........ccccccueuciniciiiniciniciiiiciicicscseesciecesceaes 444
CONCIUSION ..ottt 446
Points to reMeMmMDETccooiiiiiiii e 447
REfEIONCES......ooieiecictciieiei e 447
18. Making it Easier to Code ceesneneaeneneneanes 449
INETOAUCHON ..ot 449

1] 8 B ol a0 54 I S ST TTSRRR R RRO SRRSO 449

xxi

ODJECHIVES ...ttt 450
Recipe 18.1: String formatting ..o 451
Recipe 18.2: std:print ... 456
Recipe 18.3: starts_with and ends_with for strings..........c.cccccevuvieivnicvnicinnccnnen 458
Recipe 18.4: Other enhancements for strings and rangesccccccocueeuveciriciecinecnnes 460
Recipe 18.5: using enum reduces typing for enumsccccceevvvvviiinnniicniiiiininn, 461
Recipe 18.6: New date features ..o 464
Recipe 18.7: New time features ..o 470
Recipe 18.8: TIMeZone lIDTArycccccovvviiiiiiiciiiiciicccee e 474
Recipe 18.9: std:midpoint........ccccouiuiuiiiiiiiiiiiiiiii e 477
Recipe 18.10: <numbers> includes pi and €...........ccccoevvirinininiiincccccc 479
Recipe 18.11: Bit manipulation ... 481
Recipe 18.12: Designated initializer for aggregates..........cccccovvviviiiiinnniiiiccnns 489
CONCIUSION ..ottt 491
Points to reMeMmMDET ... 491
REfEIONCES......ooieiecictciieiei e 492
19. Making Your Code Cleaner....... cererererenenssseaens 493
INETOAUCHON ..ot 493
SEIUCUTE ..ot 493
ODJECHIVES ...t 495
Recipe 19.1: Familiar template syntax Lambdascccccoveiriiiniiiicniiiiicnns 495
Recipe 19.2: Lambda parameter packs...........ccccoeriiiiiniiiiiiiiiiiicccccces 497
Recipe 19.3: Literal class types in non-type template parametersc.ccccevevnruces 499
Recipe 19.4: Multidimensional subscript operator.............ccccceoveviiviiinnniccciiines 501
Recipe 19.5: std::make_shared supports arrays..........cccccocvceiecivicinisincinicinisicnicines 503
Recipe 19.6: CTAD improvements...........cccoceiiiiiiiininiinccceeseeccssnnes 505
Recipe 19.7: Deducing this...........cccciiiiiiiiiiiciiiiciiccieeciccecs i 507
Recipe 19.8: Transforming auto...........ccccceviviiiniiiiiiiiiiiiiiccccc e 510
Recipe 19.9: char8_t and std::u8String typescccccuecuriciriueicinicininiciscseicseeeaes 512
Recipe 19.10: Suffix for std::Size_t........ccovviviiiiiiiiiiiiicc 512

Recipe 19.11: Named universal character €Scapes...........cccoceueunicuniiniciniciniieicisicnnns 513

xxii

Recipe 19.12: Monadic operations for std::optional...........ccccceeeiiiiniinniiiicnns
Recipe 19.13: Using std::expected ..o
Recipe 19.14: Pre-processing directives elifdef and elifndef............cccoceovrinnnnis
Recipe 19.15: invoke_1<T>......ccccoiiiiiiiiiiiiicccc e
Recipe 19.16: <SPaNSLIeAIMI™ccceiiiiiiiiiiiiiiiiiiic e
Recipe 19.17: Bit initializationcccccciiiiiiiiiiiiiiiiccc e
Recipe 19.18: Extend init-statement to allow alias-declaration...........ccccccevvvvinnncnns
CONCIUSION ..ottt
Points to reMeMmMDETc.cooiiiiiiii e

REFEIEIICES. ...ttt e et e et e s eaa e e e s aaessenateesesaeesenseeeesnseesanes

20. Making Your Code Safer cereenneneneaeasanaeas

INErOAUCHON ..o
SEIUCHUTE .o
ODJECHIVES ...t
Recipe 20.1: Fixed width floating-point typescccccvucuviuriccinicinininciniciciceicenes
Recipe 20.2: Conditionally explicit CONStructorccovvviiiiiiiiiiiiiiiiiccccce,
Recipe 20.3: #WATTINEooveviiiiiiieieete et
Recipe 20.4: std::start_lifetime_as ...
Recipe 20.5: std::out_ptr(), std:inout_ptr()......ccceeeceeermcerrieeeenieerceeeeeireeeeneneees
Recipe 20.6: Overloads of std::to_chars() and std::from_chars().........ccccccceuvveiucurunee.
Recipe 20.7: constexpr std:bitsetccooviiiiiiiiiiiii
Recipe 20.8: std::to_underlying ...
Recipe 20.9: Direct initializationcccoooveiiiiiiiiiicccc
CONCIUSION ..o
Points to TeMEMDETcccciiiiiiiiiiiiicii e

REFEIEIICES. ...ttt e et e et e e e aa e e e s aaessenaeeeeesseesenseeeesnseeeanes

21. Making Your Code Faster and Easier to Debug ceesneneaeneneneanes
INETOAUCHON .ttt
SEIUCHUTE ..ttt

ODJECHIVES ...t

Recipe 21.1: [[likely]] and [[unlikely]]......cccccoeiiiniiiiiiiiicccceerccnes 556
Recipe 21.2: [[aSSUME()]] -.evevuvvveiicieiicieiicereceeecei s 559
Recipe 21.3: std::unreachable...........ccccciiiiiiiiicicccce s 561
Recipe 21.4: string::substr is faster.........ccooviviiiiiiiiiiiicccce 562
Recipe 21.5: string::resize_and_OVerWTite ..o 563
Recipe 21.6: PMR CONtaINeTS......ccoiiiiiiiniiiiiiiciciiccetccecrc e 564
Recipe 21.7: Comparing integralscccocovriiiiiiiiiiiiiicscenne 566
Recipe 21.8: std::endl vs A T et ettt ettt et et e et e e et eete et e et eaaeeate st e eeeaaeeane 567
Recipe 21.9: Synchronized stream OUtPULcccuciuiiciiiciniiciciiicicccece 569
Recipe 21.10: std::source_location...........cceuviriiiiiiiiiiiiiiniiiiiccc e 573
Recipe 21.11: std:Stacktraceccoeveviiiiicicieiecccce e 575
CONCIUSION ..ot 578
Points to reMEeMDETcoovoiiiiiicc 578
RefOIONCES......viiiiiiiiiicic 578

Index579-586

Welcome to
C++

C++ is a wonderful language. You can often be working with high-level abstractions, but
still be able to dig down deep and work with raw memory. C++ has been around for
decades, and with the efforts of many good people out there, is still evolving. We can
assume that this means that it will probably be around for decades more. It is on lists of
most used languages (sometimes in the top 10, and if not, then certainly the top 20), as well
C++is on lists of programmers” most liked languages. C++is not owned by a big company,
has multiple companies making compilers for it, and many companies making tools and
libraries for it. It runs on different operating systems, for purposes big and small. The
governing body meets regularly to discuss, debate, and decide what will go into the next
release. Releases were decided to be every three years, which they have done in the age of
modern C++ (11, 14, 17, 20, 23, and they are already talking about C++26). To be precise,
the releases are defined every three years. At the time of writing this book, at the end of
December, C++23 was still being voted on whether it is officially released.

We could not talk about everything to do with C++ just in one book, and so we are here to
talk about the latest couple of releases; C++20 and C++23.

Recipe 1: Who is this book for?

Problem: We want to know who should read this book.

Solution: It can appeal to different types of audiences.

XXU1

Of course, we would like to say anybody and everybody can read this book. However, this
is a cookbook focusing on the newest releases. If you are just starting out knowing little
about C++, then this probably is not the best first book for you. Having said that though,
today’s world lets us learn in different media in different ways. If you have a handful of
websites and other learning video channels that teach you the basics, then yes, you can
buy the book as a secondary source of learning.

This book does not only discuss the basics but focuses on new features. In that regard,
it can be used by any who knows the basics but is not kept up to date with all the latest
features. If you look at the following figure, we would say that we are trying to focus on
what you will want to know to get caught up on the latest features.

| Speculation on C++26 features ‘

Intricate details of features for C++ 20, and 23

. Other
Introduction to most of the sl

C++20 and 23 features. d features

f C++ 20,
(You are here) s

Features of C++ 11 through 17

C++ language basics

Figure 1: What this book is about

Recipe 2: What is the format for each
chapter?

Problem: How is each chapter planned out?

Solution: It is a cookbook-type design, with many problem and solution topics for various
Recipes.

Each chapter has a particular focus:
e We have an Introduction, or overview of what the chapter is about.

e The Structure is given, which lists the features or topics that we will talk about in
detail.

e We have a brief statement on the Objectives of the chapter.

XXU1i

e Then, we iterate over our Recipes, which are individual topics in the chapter.
Sometimes, a recipe can be about an idea, but often it is about a particular class or
function. There can be between 5-15 recipes in a chapter. We have tried to provide
lots of code samples to help illustrate what the recipe is about.

e Next, we give a Conclusion, which summarizes what you have learned in the
chapter.

e We give reminders of some important facets in the Points to remember section.

e Lastly, we provide References, aside from needing to say where the information
came from, which is also a huge and sincere thank-you to those who provided
information and helped inform others. There are probably more resources that
we could have mentioned. For brevity’s sake, if we saw similar information on a
handful of different websites and videos, then we jotted down what we thought
best presented the information.

Recipe 3: Is C++23 worth reading about?

Problem: If there have been so many releases, can we just learn it as we go?

Solution: You probably can learn a bit as you go, however the good and bad part about
C++, is that it has evolved over the decades. So yes, you could continue using nothing but
new and delete, and maybe you could get by and use a few new classes as you trip over
them. The result though, is that the code, and coder, will not be as good as they could
be. Some things get deprecated, but a lot of code is still around due to historical use.
Everybody says you should not use function A(), but now use function B(). And in truth,
we are probably on function D() in some cases. You should want to at least be aware of
the latest features. You may not want to, or need to, rewrite your entire code-base because
new features exist, but for new functionality, you should understand what is in the latest
release(s), to make an informed decision on when to use them. Compilers are smarter,
computers are faster, learning tools are better, and so using newer features will not make
your job more difficult. Releases are created based on input like yours, to make coding
with new features safer, smarter, faster, and easier.

To get into slightly more detail, the C++20 release was huge. It was arguably the biggest
C++ update ever in terms of features. What is more, it helped to define a direction on
where the language should head. C++20’s Big Four features will influence other features
for years to come. C++23 is not as big as C++20, partially, because of the global pandemic,
and admitted partially because there were multiple changes from C++20. Having said that,
C++23 is an impressive release on its own merit, which will change how coders create
software.

xXxXviii

Refer to the following figure:

C++23
C++20 s std & std.compat modules
= Concepts * ge;erato;is t flat set
-
* Ranges, views & std::span m span_, at_map, tlat_se
* Built-in concepts * lots of fixes
* Modules
= Coroutines
* Constexpr, consteval, & constinit
* Container enhancements
C++17
* template argument deduction
* de-structuring initialization
+ std:variant, std::optional, std::any
+ std:invoke (for std::function or std::bind)
+ parallel algorithms
C++11 C++ 14
* more collection templates + pgeneric lambda expression & lambda
* IT.'mhc:ja & uni capture initializer
' s an.} _ptr N un.lque_ptr + return type deduction
. multlthreadm_g library « expand constexpr syntax
* move semantics * variable template, std::make_unique
+ final
* auto
C++ 98 (1998) C++ 03 (2003)
* Smaller * Minor changes
changes & bug fixing
C++v2(1989)
C++v1(1985)
* multiple inheritance, abstract classes
* free-store memory (new,/delete) + static and constant member functions
« virtual functions, Overloading * protected members, boolean
+ References + Templates, Exception
e Constants * Namespaces, Casts

Figure 2: Overview of C++ releases

Recipe 4: Is the book just about C++23?

Problem: We want to learn more about the latest version, but have not focused too much
on other recent releases.

Solution: This book talks wants you to learn the latest, but understands if you might have
missed something along the way.

xxix

The book has tried to include everything that has been defined in the C++23 release. A
couple of features might be vague or short, partially because some features are more
important than others, but also a couple of C++23 features are still a bit vague. They are
included in the release, but no one has implemented the feature, and there is not much
information about them outside of the spec. As we have said, C++20 was such an important
release, that some parts of C++23 are tough to understand if you do not know about the
related C++20 features. We do talk quite a bit about the C++20 release, and even some parts
of the C++17, but that is not to distract you from learning about C++23, but here to help you
understand how we got to C++23.

Recipe 5: How to work with the code

Problem: How do you use the code samples provided?
Solution: We can walk you through some of that.

Most of the code samples were built and run in Visual Studio 2022. We have used Visual
Studio Code as well. There are two main steps to use C++23 in Visual Studio. The first is
to run the Visual Studio Installer program and enable using the Latest C++ tools. Refer to
the following figure:

C++ Modules for v143 build tools (x64/x86 — experimental)
C++ Universal Windows Platform support for w143 build tools (ARM64/ARMB4EC)
C++ Windows XP Support for VS 2017 (v141) tools [Deprecated]
C++/CLI support for v141 build tools (14.16)
C++/CLI support for v142 build tools (14.29-16.11)
C++/CLI support for v143 build tools (14.30-17.0)
C++/CLI support for v143 build tools (14.31-17.1)
C++/CLI support for v143 build tools (14.32-17.2)
C++/CLI support for v143 build tools (14.33-17.3)
C++/CLI support for v143 build tools (14.34-17.4)
C++/CLI support for v143 build teols (14.35-17.5)
C++/CLI support for v143 build tools (14.36-17.6)
C++/CLI support for v143 build tools (Latest)

Figure 3: Showing we are using the "Latest” build tools, in the Visual Studio Installer

The next is to go into your project settings and select if you want to use the Preview release
of the C++ Standard. This would equate to having /std:c++latest in your makefile. Refer to
the following figure:

L s e s R e (e e iy

4 C/C++ Force Conformance in For Lo Yes (/Zc:forScope)

General Remove unreferenced code a Yes (/Zc:inline)
Optimization Enforce type conversion rules
Preprocessor Enable Run-Time Type Inform
Code Generation Open MP Support
anguage C++ Language Standard Preview - Features from the Latest C++ Working Draft (/std:c++latest)

S T | ImA mam IAAAAN AL 8 F_aa

Figure 4: Visual Studio project setting to use the latest C++ standard

