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Preface

C++ Cookbook walks you through all the recent new features. In a cookbook-type style
that talks about each new class or function, it shows you in simple terms how to use it.
Authored by a software professional, with over 3 decades of experience, their passion for
coding shows in the book. This book takes the reader on a tour of what they will need to
know to be up to date with the latest C++ abilities.

The book outlines new features, with lots of code examples. They can use it as a reference
guide, or progress through each how-to recipe to maximize their knowledge. Sometimes it
will give suggestions on the best approach, but mainly wants to inform you of options, and
lets you take the right path for your individual situation. The book should help those that
have not kept up to date with recent C++ releases. Whether your company was sticking
to an older standard, or you are starting with a new product. There are a lot of great
new features available, and this book will help you working with the latest and greatest
functionality. You can walk through all the chapters with their code examples, or use it as
a quick-reference guide for something specific.

After reading it, you will be up to date and will make you and your project work better.

Chapter 1: Working with Concepts — It defines what a concept is, how to use one, and
how to create your own. It discusses the different styles how concepts are defined;
whether creating a single constraint on a variable or a function, making a requires clause,
or combining concepts to make a conjunction or compound requirement.

Chapter 2: Using the New Core Language Concepts — The chapter initiates a long journey
to learn what existing concepts are included in C++. There are concepts for comparison,
assignment, checking on the type, and hierarchy.

Chapter 3: Using the New Comparison Concepts — The chapter continues delving into
predefined concepts. We look at those relating to equality, and comparison.

Chapter 4: Using the New Iterator Concepts — Our next step into concepts looks at all of
the concepts defined for iterators, and also talks about the progression of functionality with
types of iterators. We also touch on some other concepts relating to moving or copying
values.

Chapter 5: Using the New Object Concepts — We pick up where we left off, talking about
concepts relating to the constraints of moving or copying values. We also discuss the
similarities and differences between the concepts semiregular and regular.
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Chapter 6: Using the New Callable Concepts — We will talk about concepts relating
functions, or other mechanisms that we can call to execute some code.

Chapter 7: Const Related Specifiers — With this chapter, we end our lengthy talk about
concepts and discuss specifiers relating to defining what is constant. We go over previously
existing specifiers, and talk about newer ones that will help your code be more efficient.

Chapter 8: Concurrent Processing — The chapter discusses threads, callbacks, and different
ways for your code to be executed safely by different threads at the same time.

Chapter 9: Coroutines — The chapter presents a new mechanism for executing code. We
get into the details of the parts of a coroutine, how to create them, and how to use them.

Chapter 10: Organizing Your Code with Modules — The chapter covers a great new
addition to the language. Modules will help you organize your code easier. We get into the
details of its components and go through how to using other modules, and learn how to
write our own code.

Chapter 11: Introduction to Ranges and Views — The chapter starts discussion about what
ranges, views, and spans are. The differences between them, and how to use them are
discussed. Since ranges relate to concepts, we will talk about some of the existing range
concepts.

Chapter 12: Range Access and Non-Modifying Sequence Functions for Ranges — The
chapter continues to discuss ranges, and some of the functionality relating to subranges,
sizes, iterating, and comparing.

Chapter 13: Range Algorithms: Sort, Search and More — The next leg of our journey talks
about ranges deals with searching and sorting. We can perform functions on a range to get
a value, or even a new range by doing a permutation.

Chapter 14: Range Algorithms: Memory and Modification Functions — We focus on
memory; moving values around, and doing transformations.

Chapter 15: Views and Range Adaptors — The chapter talks about the many functions that
exist so we can get values in a view by calling a range with an adaptor.

Chapter 16: Range Factories and Utilities — We conclude our talk about ranges by showing
some exiting new functionality. We can create an infinite view of values, whether by using
a simple function or a generator. There is code showing how to even format your range
for output.
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Chapter 17: New Features for Containers — The chapter covers a lot of ground, dealing
with new container types, and simple new functions.

Chapter 18: Making it Easier to Code — There are a number of new features discussed that
you will be happy to see such as easier output, new enhancements for strings and ranges,
plus an easier way to use enums and bits. There is also new types for dates, times and time

zones.

Chapter 19: Making Your Code Cleaner — The chapter covers many recent features for
lambdas, new suffixes, optional and expected arguments, plus new preprocessor directives
for cleaner code.

Chapter 20: Making Your Code Safer — The chapter touches on some important new
features to make code less fragile.

Chapter 21: Making Your Code Faster and Easier to Debug — We conclude by talking about
ways to make your code run faster; including some new functions, and new attributes. We
also talk about new types that could help you debug your code.
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Welcome to
C++

C++ is a wonderful language. You can often be working with high-level abstractions, but
still be able to dig down deep and work with raw memory. C++ has been around for
decades, and with the efforts of many good people out there, is still evolving. We can
assume that this means that it will probably be around for decades more. It is on lists of
most used languages (sometimes in the top 10, and if not, then certainly the top 20), as well
C++is on lists of programmers” most liked languages. C++is not owned by a big company,
has multiple companies making compilers for it, and many companies making tools and
libraries for it. It runs on different operating systems, for purposes big and small. The
governing body meets regularly to discuss, debate, and decide what will go into the next
release. Releases were decided to be every three years, which they have done in the age of
modern C++ (11, 14, 17, 20, 23, and they are already talking about C++26). To be precise,
the releases are defined every three years. At the time of writing this book, at the end of
December, C++23 was still being voted on whether it is officially released.

We could not talk about everything to do with C++ just in one book, and so we are here to
talk about the latest couple of releases; C++20 and C++23.

Recipe 1: Who is this book for?

Problem: We want to know who should read this book.

Solution: It can appeal to different types of audiences.
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Of course, we would like to say anybody and everybody can read this book. However, this
is a cookbook focusing on the newest releases. If you are just starting out knowing little
about C++, then this probably is not the best first book for you. Having said that though,
today’s world lets us learn in different media in different ways. If you have a handful of
websites and other learning video channels that teach you the basics, then yes, you can
buy the book as a secondary source of learning.

This book does not only discuss the basics but focuses on new features. In that regard,
it can be used by any who knows the basics but is not kept up to date with all the latest
features. If you look at the following figure, we would say that we are trying to focus on
what you will want to know to get caught up on the latest features.

| Speculation on C++26 features ‘

Intricate details of features for C++ 20, and 23

. Other
Introduction to most of the sl

C++20 and 23 features. d features

f C++ 20,
(You are here) s

Features of C++ 11 through 17

C++ language basics

Figure 1: What this book is about

Recipe 2: What is the format for each
chapter?

Problem: How is each chapter planned out?

Solution: It is a cookbook-type design, with many problem and solution topics for various
Recipes.

Each chapter has a particular focus:
e We have an Introduction, or overview of what the chapter is about.

e The Structure is given, which lists the features or topics that we will talk about in
detail.

e We have a brief statement on the Objectives of the chapter.
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e Then, we iterate over our Recipes, which are individual topics in the chapter.
Sometimes, a recipe can be about an idea, but often it is about a particular class or
function. There can be between 5-15 recipes in a chapter. We have tried to provide
lots of code samples to help illustrate what the recipe is about.

e Next, we give a Conclusion, which summarizes what you have learned in the
chapter.

e We give reminders of some important facets in the Points to remember section.

e Lastly, we provide References, aside from needing to say where the information
came from, which is also a huge and sincere thank-you to those who provided
information and helped inform others. There are probably more resources that
we could have mentioned. For brevity’s sake, if we saw similar information on a
handful of different websites and videos, then we jotted down what we thought
best presented the information.

Recipe 3: Is C++23 worth reading about?

Problem: If there have been so many releases, can we just learn it as we go?

Solution: You probably can learn a bit as you go, however the good and bad part about
C++, is that it has evolved over the decades. So yes, you could continue using nothing but
new and delete, and maybe you could get by and use a few new classes as you trip over
them. The result though, is that the code, and coder, will not be as good as they could
be. Some things get deprecated, but a lot of code is still around due to historical use.
Everybody says you should not use function A(), but now use function B(). And in truth,
we are probably on function D() in some cases. You should want to at least be aware of
the latest features. You may not want to, or need to, rewrite your entire code-base because
new features exist, but for new functionality, you should understand what is in the latest
release(s), to make an informed decision on when to use them. Compilers are smarter,
computers are faster, learning tools are better, and so using newer features will not make
your job more difficult. Releases are created based on input like yours, to make coding
with new features safer, smarter, faster, and easier.

To get into slightly more detail, the C++20 release was huge. It was arguably the biggest
C++ update ever in terms of features. What is more, it helped to define a direction on
where the language should head. C++20’s Big Four features will influence other features
for years to come. C++23 is not as big as C++20, partially, because of the global pandemic,
and admitted partially because there were multiple changes from C++20. Having said that,
C++23 is an impressive release on its own merit, which will change how coders create
software.
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Refer to the following figure:

C++23
C++20 s std & std.compat modules
= Concepts * ge;erato;is t flat set
-
* Ranges, views & std::span m span_, at_map, tlat_se
*  Built-in concepts *  lots of fixes
*  Modules
= Coroutines
* Constexpr, consteval, & constinit
* Container enhancements
C++17
* template argument deduction
* de-structuring initialization
+ std:variant, std::optional, std::any
+ std:invoke (for std::function or std::bind)
+ parallel algorithms
C++11 C++ 14
*  more collection templates + pgeneric lambda expression & lambda
* IT.'mhc:ja & uni capture initializer
' s an.} _ptr N un.lque_ptr + return type deduction
. multlthreadm_g library «  expand constexpr syntax
* move semantics * variable template, std::make_unique
+ final
* auto
C++ 98 (1998) C++ 03 (2003)
* Smaller * Minor changes
changes & bug fixing
C++v2(1989)
C++v1(1985)
* multiple inheritance, abstract classes
* free-store memory (new,/delete) + static and constant member functions
« virtual functions, Overloading * protected members, boolean
+ References + Templates, Exception
e Constants * Namespaces, Casts

Figure 2: Overview of C++ releases

Recipe 4: Is the book just about C++23?

Problem: We want to learn more about the latest version, but have not focused too much
on other recent releases.

Solution: This book talks wants you to learn the latest, but understands if you might have
missed something along the way.
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The book has tried to include everything that has been defined in the C++23 release. A
couple of features might be vague or short, partially because some features are more
important than others, but also a couple of C++23 features are still a bit vague. They are
included in the release, but no one has implemented the feature, and there is not much
information about them outside of the spec. As we have said, C++20 was such an important
release, that some parts of C++23 are tough to understand if you do not know about the
related C++20 features. We do talk quite a bit about the C++20 release, and even some parts
of the C++17, but that is not to distract you from learning about C++23, but here to help you
understand how we got to C++23.

Recipe 5: How to work with the code

Problem: How do you use the code samples provided?
Solution: We can walk you through some of that.

Most of the code samples were built and run in Visual Studio 2022. We have used Visual
Studio Code as well. There are two main steps to use C++23 in Visual Studio. The first is
to run the Visual Studio Installer program and enable using the Latest C++ tools. Refer to
the following figure:

C++ Modules for v143 build tools (x64/x86 — experimental)
C++ Universal Windows Platform support for w143 build tools (ARM64/ARMB4EC)
C++ Windows XP Support for VS 2017 (v141) tools [Deprecated]
C++/CLI support for v141 build tools (14.16)
C++/CLI support for v142 build tools (14.29-16.11)
C++/CLI support for v143 build tools (14.30-17.0)
C++/CLI support for v143 build tools (14.31-17.1)
C++/CLI support for v143 build tools (14.32-17.2)
C++/CLI support for v143 build tools (14.33-17.3)
C++/CLI support for v143 build tools (14.34-17.4)
C++/CLI support for v143 build teols (14.35-17.5)
C++/CLI support for v143 build tools (14.36-17.6)
C++/CLI support for v143 build tools (Latest)

Figure 3: Showing we are using the "Latest” build tools, in the Visual Studio Installer

The next is to go into your project settings and select if you want to use the Preview release
of the C++ Standard. This would equate to having /std:c++latest in your makefile. Refer to
the following figure:

L s e s R e (e e iy

4 C/C++ Force Conformance in For Lo Yes (/Zc:forScope)

General Remove unreferenced code a Yes (/Zc:inline)
Optimization Enforce type conversion rules
Preprocessor Enable Run-Time Type Inform
Code Generation Open MP Support
anguage C++ Language Standard Preview - Features from the Latest C++ Working Draft (/std:c++latest)

S T | ImA mam IAAAAN AL 8 F_aa

Figure 4: Visual Studio project setting to use the latest C++ standard



