Building
End-to-End Apps
with
C#11 and .NET 7

The complete guide to building web,
desktop, and mobile apps

Arun Gupta

www.bpbonline.com

ii
Copyright © 2024 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor BPB Online or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online
cannot guarantee the accuracy of this information.

First published: 2024

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55516-374

www.bpbonline.com

11}

Dedicated to

In loving memory of my father, your dedication, tireless work
ethic and simple lifestyle continue to inspire me every day. Your
life was a shining example of determination and passion, setting

a standard that I strive to live up to. Like any devoted parent,
you yearned for nothing more than to see your children excel, and
you spared no effort to make that dream a reality. Though you are
no longer with us, your legacy of love and ambition lives on in
everything that I do.

iv

Foreword

C# has been my true passion for over a decade, shaping my professional path. I've immersed
myself in the .NET developer community, sharing insights worldwide on C#-centered app
development strategies. From active GitHub contributions to collaborating with top engineers,
I have championed feature adoption and innovation. My experience as a Solutions Architect
overseeing design decisions for twenty teams resulted in an astonishing 20x speed boost in
just 30 days. I am honored to hold titles like Google Developer Expert, two-time Microsoft
Valuable Professional (MVP), Twilio Champion, and author of "Learning Blazor: Build Single-
Page Apps with WebAssembly and C#" with O’'Reilly Media. Co-hosting "On .NET Live" has
also been an incredible journey, and I'm deeply grateful for these enriching experiences that
celebrate diversified thoughts from amazing people around the .NET community.

App developmentin C# encompasses a wide array of possibilities, resonating uniquely with each
developer. This language serves as a versatile paintbrush, enabling you to craft and collaborate
with fellow enthusiasts in the ever-evolving realm of modern software development. What
masterpiece will you bring to life, how brilliant will it shine, and whose world will it enhance?
Within the pages of this book, you'll delve into the realm of C# development, exploring its real-
world applications and the captivating stories it can tell. It is my firm belief that C# developers
possess the ability to create truly exquisite and meaningful digital experiences.

C# has continually evolved with each new iteration of .NET over the years. As developers,
we're confronted with the pivotal task of discerning which features to incorporate into our
projects and, crucially, why we should do so. This decision-making process necessitates a deep
understanding of the trade-offs involved—whether a feature enhances readability, boosts
performance, or simplifies complexity. Notably, not all features will tick all these boxes, and
that's perfectly acceptable. However, it remains invaluable to grasp the array of available
features.

Certain features wield the power to profoundly influence how we craft our code. From libraries
and services to frameworks and core functionalities, they can usher in significant shifts. This
underscores the importance of cultivating robust development environments anchored by
dependable codebases. Our reliance on cutting-edge tools, including world-class integrated
development environments, enriched by Al-powered statement completions and language
servers, fuels our productivity and ensures we stay at the forefront of innovation. In this
book, you'll explore these evolving features, understand their implications, and navigate the
dynamic landscape of C# development.

(%

In this book, you'll explore an extensive array of app development scenarios catering to
diverse client needs. We begin by thoroughly covering the features of C# 11, progressing into
web app development with ASPNET Core Web app and Web APIs. The journey continues
with gRPC Services, the innovation of Blazor WebAssembly, and a nod to TypeScript and SPA
development with Angular. We also delve into desktop applications using WPE, WinUI 3, and
NET MAUL Just when it seems like we've covered it all, we introduce you to ML.NET for
machine learning app development. This book is a comprehensive resource that helps you
pinpoint which features align with your goals. I'm confident that you'll find tremendous value
in this read, and I want to extend my gratitude to Arun for creating this exceptional book.

- David Pine
(Microsoft, Senior Content Developer)

vi

About the Author

Arun Gupta brings over twenty-five years of valuable experience in software development.
He has worked in diverse roles across medium and large organizations in services and
product development industry of the likes of erstwhile CMC Limited, Patni Computers and
Kronos Solutions. These days, besides technical consulting, he enjoys sharing his expertise by
mentoring and helping individuals become better programmers and testers.

vii

About the Reviewer

Marco Siccardi is a .NET developer with more than 10 years of experience, currently working
primarily with Xamarin and .NET MAUI on iOS in his day job for a big Swiss transportation
company. He has also worked with server, desktop, web and cloud technologies in the past,
completing his expertise.

His side projects have a wide range from mobile apps to cloud based applications and open
source libraries, utilising everything the .NET world has to offer (including Azure, ASP.NET,
MS SQL). In all projects, Marco is trying to get the cleanest architecture, using established
patterns like MVVM, the repository pattern and others.

Recently, he started to explore the Swift programming language to evolve his native knowledge
of the Apple ecosystem.

Besides that, he shares his knowledge through his personal blog, is an active runner and loves
to take snaps with his iPhone. He is father of two young adults and husband to a patient and
understanding wife.

viii

Acknowledgement

I would like to express my deep gratitude to several individuals whose unwavering support
and contributions have played a pivotal role in bringing this book to fruition.

I extend my heartfelt thanks to my wife, Deepika, and my sons, Dhruv and Anmol, your
patience, love, and the steadfast belief in my endeavors have been my guiding light. Even
during the several missed family occasions and countless stern noes, your understanding and
encouragement have kept my spirits high and my determination unshakable.

To my family, friends and colleagues, your encouragement and well-wishes provided the
invisible force that propelled me to the finish line. Your belief in me has been a constant source
of inspiration.

Special thanks to Marco for his meticulous technical review and invaluable comments, which
improved the technical aspects of the content.

Specifically, for the ML.NET chapter, I would like to extend my heartfelt appreciation to my
former colleague, Ajay Sharma, a distinguished authority in this domain. Ajay graciously
steered me in the right direction on more than one occasion, for which I am grateful.

I am also grateful to the dedicated BPB staff for their professionalism and the process framework
of seamlessly transforming individuals from the industry into first-time authors.

To each of you, your collective contributions have been indispensable in making this book a
reality, and for that, I am deeply thankful.

ix

Preface

Welcome to the world of C# programming, where learning is an immersive journey, and
knowledge is acquired by doing. This book is not a conventional manual; instead, it is a
collection of notes born from the essence of a computer lab experience. As you delve into these
pages, you embark on a journey that sets a learning tone reminiscent of a technical blog, where
we tackle real-world problems step-by-step, unravelling the intricacies of C# 11 and .NET 7
along the way.

The approach is unique. Instead of diving deep into a single topic, we take a panoramic view,
exploring various aspects necessary to build end-to-end applications. Think of it as going
breadthwise around a topic, appreciating its nuances, before diving deep. This approach does
not negate the value of depth, but it lays a solid foundation by starting from the concrete and
progressing towards the abstract rather than the other way around.

This book is not a primer, it assumes you already possess a basic understanding of C# and
Visual Studio. However, it serves as a steppingstone for those looking to graduate to the new
language features, application types, and ways of working within the Visual Studio IDE.

The vast sea of information scattered across the internet and Microsoft's website can be
overwhelming. This book serves as a beacon, synthesizing information from multiple sources
into a coherent picture in the context of solving a specific problem. It presents this wealth of
knowledge as a concise summary, guiding you towards further exploration through credible
resources.

Each chapter in this book is bound together by the project templates found in Visual Studio.
We leverage these templates to build a variety of applications, progressing step by step.
Throughout these pages, we reinforce key concepts by creating engaging projects centered
around interesting topics such as a Digital Bookstore, game of Cows and Bulls, Sudoku, an
Image Navigator, and more. We begin with the big picture followed by taking the step-by-step
journey into thinking about solving the problem. Once you have mastered the projects detailed
within these pages, you will be equipped to apply the same principles to your own projects.
The aim is the proverbial "teach you how to fish" — get you started and bring you up to a level
where you can find the answers yourself.

In today's world, books are just one of the many resources at our disposal to get information
and build knowledge. I commend your determination to excel in this field and implore you not
to let your initial enthusiasm wane. I encourage you to fully engage with the text, diligently

X

work through all the examples, ponder over the exercises, and explore the references. This
way, by the end you will not only have a deeper understanding of these technologies but also
a newfound inquisitiveness to delve further into the subject matter.

So, dear reader, as you embark on this educational journey, remember that this book is your key
to unlocking the world of C# programming. Approach it with curiosity, embrace the "learning
by doing" philosophy, and let it be your guide to mastering C#, .NET, and Visual Studio, one
step at a time. I invite you to explore, experiment, and excel in this exciting field, and may this
book be your trusted companion on your path to success.

The chapter-wise details are as follows

Chapter 1: New Features in C# 11 - NET version 6 released in Nov 2021 along with C# 10 since
then there have been several advancements both in .NET platform and the C# language. This
chapter describes the new features that have made their way in C# language. Also included are
the code snippets demonstrating the working and the use of the new features.

Chapter 2: ASP.NET Core Web App - gives an overview of the different web applications that
can be created in .NET 7 and then goes on to explain with the example of creating a Digital
Book Store, Razor Pages web application end-to-end. Unit testing is demonstrated for the Book
Details page and Selenium based functional test is written for the Book Index page.

Chapter 3: ASPNET Core Web API - focuses on developing Web APIs using ASPNET Core.
It explains the various concepts around API development along with creating a simple Create
Read Update and Delete (CRUD) Web API around the Digital Book Store.

Chapter 4: gRPC Service - introduces the ASP.NET Core gRPC services as a logical extension
of WCF services and compares it to the other options of building services. It illustrates the
concepts around gRPC services by creating one which will download a large file on the client
through service method call using server streaming. MSTest based unit-test is written for the
Employees Data Service.

Chapter 5: Blazor WebAssembly - introduces the different Blazor applications, describes the
concepts around them and goes on to create a simulation for the game of Cows and Bulls using
Blazor WebAssembly App project template, to highlight the intricacies of the development
process. Unit-testing is demonstrated for the Razor components using the bUnit —a community
driven project. For end-to-end testing scenario the use of Playwright .NET is described.

Chapter 6: SPA with Angular - develops a rich single-page application with Angular on the
client side supported by ASP.NET core on the server side. The chapter explains the interplay of
different technologies in various tiers followed by creating the Angular version of the Digital
Book Store application starting with the ASPNET Core with Angular project template.

xi

Chapter 7: WPF Application - we begin exploration of the Microsoft’s desktop applications
starting with Windows Presentation Foundation (WPF). We will understand the different types
of Desktop Applications that can be created and where WPF fits in the overall strategy. To
understand the controls and layout, we will create a simple custom pizza order form followed
by building a real world WPF application around the popular game of Sudoku. Here, to further
re-enforce the concepts in building a WPF application we will make use of User Controls to
design the Ul, implement Model-View-ViewModel (MVVM) pattern, make use of resource
dictionaries, and finally publish the application. Unit-testing of the MVVM application is
demonstrated by adding MSTest based test for the View-Model.

Chapter 8: WinUI 3 - begins by describing the evolution of creating applications for the
Windows platform and then goes on to elaborate on developing native Windows applications
for Windows 10 and Windows 11 using Windows UI Library (WinUI) 3. To understand the
concepts around building a real-world WinUI application we will create an Image Navigator
application.

Chapter 9: NET MAUI - describes the evolving landscape for mobile application development
with .NET followed by an overview of developing cross-platform apps using the NET MAUI
application templates. We will examine the differences in the NET MAUI App template and
the NET MAUI Blazor Hybrid App template. This will be followed by migrating the Sudoku
application that we created using WPF into a . NET MAUI application, to further elaborate the
concepts around .NET MAUIL

Chapter 10: ML.NET - gives an overview of building machine learning model in .NET using
the ML.NET library. The chapter begins by explaining the overall machine learning process
and goes on to illustrate the concepts by creating a program that uses binary classification
algorithm to perform sentiment analysis. Another example uses the graphical Visual Studio
extension Model Builder, to solve machine learning problems related to regression analysis.
This is followed by working end-to-end on an anomaly detection problem with a reasonably
large financial dataset including data preparation and model training followed by evaluation
and prediction using the model.

xii

Disclaimer

(Running examples on Mac)

We would like to bring to your attention that the programs developed in this book, along
with the related code bundle, have been meticulously crafted using Visual Studio 2022 on a
Windows 10 machine. While we have made every effort to ensure compatibility with other
environments, it is essential to acknowledge that variances may arise when attempting to
execute these programs on a Mac machine.

Our technical reviews have revealed that these differences can encompass a range of aspects,
from variations in menu options to the absence of certain features. In such instances, we kindly
urge our readers to embrace experimentation while keeping the end-goal in mind. We firmly
believe that with some trial and error, you can still derive significant value from the topics
discussed in this book.

For further information regarding Visual Studio on Mac and its capabilities, you may refer
to the official documentation at https://visualstudio.microsoft.com/vs/mac/. Just to add,
Microsoft is encouraging the use of Visual Studio Code for development on Mac as outlined at
https://learn.microsoft.com/en-us/visualstudio/mac/what-happened-to-vs-for-mac.

Furthermore, it is crucial to note that the chapters pertaining to desktop development using
WPF and WinUI are exclusively supported on Windows platforms.

We greatly appreciate your understanding and patience as you navigate through the diverse
technical landscape, and we remain committed to assisting you in your journey of learning
and exploration.

xiii

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/61b4r71

The code bundle for the book is also hosted on GitHub at https://github.com/bpbpublications/
Building-End-to-End-Apps-with-CSharp1l-and-.NET?7. In case there’s an update to the code,
it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at https://github.
com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the
accuracy of our content to provide with an indulging reading experience to our subscribers.
Our readers are our mirrors, and we use their inputs to reflect and improve upon human
errors, if any, that may have occurred during the publishing processes involved. To let us
maintain the quality and help us reach out to any readers who might be having difficulties due
to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.bpbonline.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at:

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical articles, sign

up for a range of free newsletters, and receive exclusive discounts and offers on BPB
books and eBooks.

Xiv

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the world,
New Release and Sessions with the Authors:

https://discord.bpbonline.com

X0

Table of Contents

1. New Features in C# 11. cerereenaeaeanene 1
INETOAUCHON. .. 1
SEIUCHUTE. ... 1
ODJECHIVES ...ttt 2
Auto-default StruCt........ccoviiiiiii s 2
Extended nameof SCOPE.........cccovuiuiiiiiiiiiiiiiicc 3
File-SCOPed tYPeScvvieiiiiciciciictc s 5
Generic attribULesc.cciiiii e 5
GENETIC MALN ...ttt 6
LSt PAtteINS. ...cviiiiiiiiiiiiicicc e 9
Microsecond and Nanosecond ((INET 7)oooioiiiieoieeeeeceeceeeeeeeeeeeeeee e eneens 10
Newlines in string interpolation expressions...........cccccovviriiiiiiiiiiiniicces 12
Pattern match Span<char> on a constant String............cccceeeuecvicinininiiiiciiciccces 13
Raw string literals.........coviiiiiiiiiiiiiiiccc e 14
Regex source generation (INET 7).......cccccociuiiiiiniiiiiiiiiiiiiicscccccesceccennans 15
Required MemDETSc.ccoviiiiiiiiiiiiiicic e 16
Simplified ordering with System.LINQ (NET 7)cccccvuiuiiriniemiiiiinicereceeicenrenenas 18
Stream reading - ReadExactly and Read AtLeast (NET 7)ccccocoueuvncnmnecinnicrennecnns 18
TAT APIS ((INET 7)ottt ettt ettt et et ettt eneeneesensessenensenseseseneeseseneenens 19
Type converters - DateOnly, TimeOnly, Int128, UInt128, and Half (NET 7)................. 21
UTE-8 string Literalscccciuiiiiiiiiiiiiiciciccccc s 22
WaINING WaVE 7 ..ottt 23
CONCIUSION.....oeiiiiiiiie s 24
Points t0 T€MEMDETc.coiiiiiiiiccc s 24
EX@ICISES....cuiiiiiiiiiiiiiciii e 25
REFEIEIICES ... 25

2. ASP.NET Core Web App w27
INErOAUCHON. ...t 27

o W B Lol 4§ 8 L IR 28

xvi

ODJECHIVES .o 28
Pre-TeQUISIEES.vvieiitiitct e 28
What is ASPINET COTE?......ccuiuiiiiiiiiciiieieisie sttt 29
Getting started with Razor Pages Web appccccevieueuriiemniiiciiiieeiceiceeecieneans 29
Structure of the (default) Razor PAZES APPccccvviviviiiiiiiciciiiiiiiiiicicicccccccsii 31
Getting started with MVC Web ApPPcccciuiiiiiiiiciiisiccccc s 32
Structure of the (default) MVC app......cccccuviciiiniiiniciiiiisicicceecee s 32
MVC vs Razor Pages Web app ... 33
Developing end-to-end Razor Pages application.........ccccoecvveivinieinncinncininiinincns 34
Creating Web APPc.cvvvvviveueiciiiiiiiceiccc s 35
GeHHNG SEATTEM ..o 35

Create TOAELS ..o 35
Scaffolding — BOOK PAGEScccueuiuiiiiiiiiiiiiiiiiiiiiiiicccccccsc s 36
Scaffolding — PUbLISHEr PAZESc.ccvuiuiuiuiuiiiiiiiiiiiiiiecctecccsscee s 40
Creating a database using EF Core mMigration...........ccccccovvivvciiiiiiiciiiiiiicciniiicccscine 40

RUt and 0erifif c...ccovviviiiiiiiiiiiiiiiiiiiiiciciciicic 42
CLEANAUP ..o 42

SCEAING cv.voveeveiiecteiee et 45

UL TEfINIETNEIES ... 50

Update Publisher 110delc.ccccceiiiiiiiciiiciceeeeee s 52
Working with related dat...............cccoovviiiiiiiiiiiiiiiiiiiiiicccc 55
Filtering reCOTMASovuvuvviviiiiiiiiiiiiiiiiicictctt s 56
Refactor to use Repository PAttermn ...t 58

UTIE EESHTLG cocvevvviieicicitctete e 61
FUNCHONAL EESHILG .. 64
DeployIment...........ccvuiuiiiiiiiiiiiiiiicicicccct 66
CONCIUSION....coviiiiiiic b 66
PoiNnts t0 TEMEMDETccciiiiiiiiiiiiiiii e 66
EXOICISES...uiviiiiiiiiiiiic s 67
REFEIENCES ...ttt 67
3. ASP.NET Core Web API...... 69
INErOAUCHON. ...t 69

o] 8 0 ol 10 54 T SRRR RO 70

ODJECHIVES ... s 70
OVverview of Web APL ... 70
HTTP. oot 71
WED AP ...ttt 71
Wb GPPS US. WED APL ..ottt 72
Pre-TeqUISIEES.....ccviviiiiiiiiiii 72
Getting started with ASPNET Core Web API........ccccooiuiiiiniiiiiniciniiisicccciseieaes 73
Structure of the (default) Web API Projectccccvvivviiviceccicsisiiiiiiicicccsieieiinens 75
Minimal API with a simplified hosting model.............cc.cccccovvvvinniiinnciiniiincice, 79
Controller approach vs. Minimal API pproach..............ccceeecvveinincinineiiiiiineeiines 80
Developing Web APL.........cccccciiiiiiic s 81
Creating Web API ProJectccvvvvviiiicirieicicieiciiticccceee e 81
GEHHING SEATTEM ... 82

CHOALE TNOMELS ... 82
Scaffolding — Books APL CONYOIIETcccuvueiviciiiiiiiiiciciciciciccicccecee e 83

Create database using EF Core Migrationcccovevviviinieueciiiiiiiiiiisisiccciisisiieieeienenns 91

RUN ANA VCTIY o 92

SOAING .ottt 93

JWT authentication and QUtROTIZATIONccoouecurieirieeiiiieieieieetseteeeeee e 94
CONSUMING APL ..o 104

URIE FESEING .ot 109
DEPLOYINEILE ...t 109
CONCIUSION.....oiiiiiiiiici e 109
Points t0 T€MEMDETccoviiiiiiiiiiiii s 109
EX@ICISOS ..ottt s 110
REFEIEIICES ... 110
4. gRPC Service 111
INErOdUCHON. ... 111
SEUCTUTE....cviiieii s 111
ODJECHIVES ...t 112
Overview of GRPC........ccoiiiiiii e 112

WHAt 1S GQRPC? ...t 113

X0l

How d0es gRPC WOTK?.........coviiiiiiiieicieisisiiiciccceee s 113
Features Of QRPC ...ttt 114
QRPC versus other Service MOeLScccccovviviviiiiiiiiiiiiiiiiicccc 115
Advantages of GRPC ...t 116
Disadvantages of QRPC..........cccccvuiuiiiiiiiiiiiiiciciciiiticsc s 117
GRPC USE CASES ...t 117
Pre-TeqUISIEES.oveei s 118
Getting started with ASPNET Core gRPC Service........ccoucuiuricuriciniininciniciniicncesienns 118
Structure of the (default) gRPC Service project...........ccccvvmeeviviiiiieieiieeiiiiiisiiiiaienns 119
Consuming the gRPC Greeter SErviCe............ouwiiviiiiiiieiiisieiiiiiiiiiieisisiecsccsseseiseinn 121
Test Greeter Service using Postman.............cccoevvvvviviiiiniviiniiiiiciiccccc 125
Enable browser access through [SON Transcodingc.cccoeveeveenneiiievicccnnnenns 127
Enable Swagger doCUmentationcceeeievoiccniieieieieiisisescccee s 129
Developing gRPC Servicecoiiruiuiinininiiicciciii s 131
Creating gRPC Service and the Client..........cccccvvviviveininciiniiiiiiiciiiccsieeceec 131
GEHHING SEATEOM ... 131

Create Proto filecocviviiiiiiiiiiiiiiiiiiiic 132

Include the sample Aata Set ... 133

Install and configure CsvHelper NuGet package..............ccccvvvvvvviiinncccnnnnnnn, 134

Create the EmployeesDataServiCe.coumuriivivmurieieiiiiieieiescicie et 135

Create the GrpcDownloadClient.............ccccuveiiiiiiiciciciiiiiiceeceece e 137

UNIE EESEING cvvvieieveeiictciee s 139
Deploymmentccccvucucuiiiiiiiiiicicicccctct s 141
CONCIUSION....cuviiiiiiicic e 141
Points t0 TEMEMDETcccuiiiiiiiiiiiiiiii e 141
EXOICISES...ueviiiiiiiiiiciic s 141
REfEIONCES......oviiiiiiiciici s 142
5. Blazor WebAssembly veereneeeneeneneaeanes 145
INErOAUCHON. ... 145
SEUCHUTE. ... e 145
ODJECHIVES .o 146

INETOAUCHON tO BlAZOT ... eeiiiieeieeeeeeeeeeeeeeeeeeeeeeee ettt e e e eeae e e et e eesaaeeseeaaeeeeanees 146

Types Of BIAZOT APPSucuvveveieiiiiiiiiiicieicieicisitcctie et 147
BIAZOT SETVLT ..o 147

Blazor WebASSEmBLY.............cccciiiiiiiiiiiiiiiiiiiicicicctccsic 148

Blazor WebAssembly HOSEedcccciiiiiiiiiiiiiiiiiicicciccccccsccccae 149

Blazor WebAssembly Progressive Web App (PWA)........cccovviiiiiiiiiiiiccciican 149

Blazor HYDYId..........cccociiiiiiiiiiiiiiiiiiciicci 149
Pre-TeqUISIEES.oviviiiee e 150
Structure of the (default) Blazor WebAssembly project..............c.ccccvvvvvivcecnicininiennnns 151
Developing Blazor WebAssembly (Hosted) APpccccocevviieiniiiiniiciiiiciicccicnas 155
Creating Blazor WebAssembly client and Servercccvvvvivvieccciciciiiiiiiieiecnnnns 156
Getting started with Blazor WebAssembly App........cccccovvvviviviiiiiiiiiiiiiiiiccinas 158

Create the INACX PAGEcvvviiiiiiiiiiiii s 160

Create variation 01 — YOU GUESScccovevviieririiiiiiiiiiiiieieeict et 162

Create variation two — COMPULLT GUESSES.........oviiiiriririririisiriiiiisias s 167

SV GAME LOG ..ottt 171

Create Ul to 0ietw GAME LOG........cccvvvvviiiiiiiiiiiiiiiiiiiiciciicccc s 178

Create reusable Razor Class lIDYATY ..o 180

UTIE FESEITIG w.vvivieieiiiteieeiet s 181
Unit-testing using bBUMNIE.............cooovviviiiiiiiiiiiiiiiiiiiiiiiic 182
End-to-end testing using Playwright INETccccoooevovviiieiiiiiieiciciiceeccee 184
DEPIOYIMENLE ...t 186
CONCIUSION.....ouiiiiiiiicictc st 186
Points to 1€MEMDETccoiiiiiiiiiiii e 186
EX@ICISES....cuiiiiiiiiiiiiiiii s 186
REFEIEICES ...t 187
6. SPA with Angular 189
INErOAUCHON. ...t 189
SHUCKUTE. ...t 189
ODJECHIVES ...t s 190
Introduction to Single-Page Applicationcccceeveiiiiiccceecce s 190
Pre-TeqUISIEES.oviviiie e 191

Getting started with SPA using ANGUIAT..........cccccccuriciniirincinieiicceee e 191

XX

Structure of (default) ASPNET Core Angular Projectccoovvveeeneieievccicnennns 192
Working of SPA template applicationcccccvevvieiiciiiciiiciicciecceeece e 198
Developing Angular CRUD APcccciiiiiiiniiiiniiiciinccceeeesnese e 203
Creating the ANGUIAY PPc.ccoveveveeiiiiiiiiiiciciciccctc e 203
GEHING SEATEOM ... 205

Create MOMELSccccuviiiiiiiiiiiiiiiccii e 207
Scaffolding — API CONEIOLIETcovieeiiiiiiieie 208
Creating database using EF Core migration.............cccccceeuericciircniiicciceesicieeeieinas 209

Add support for Swagger AoCUMENTAtIONccvueuiiiiiiiiiiiicccccccae 209

SEOAITIG ... 210

Create Angular components and SErVICESccocovvivviiniiiiiciiiiiiiiiise e 212

BOOK LiSt PAZEovvviiiiiiicictctteecttete et 214

B0k Detail PAGEcccccvvviiiiiiiiiiiiiiiiciiiiiiiciiciciccst s 219

BOOk Edit PAGE.....cvvviieieiiieeee s 223

B0OK DeLete PAGEoveiiiiiiiciciciccie 228

UNIE EESEING cvvivieieieeiictcictec s 231
DepLoymmentccccucueuiuiiiiiiiiiiciciccccct s 231
CONCIUSION....coiiiiiiiii s 231
Points t0 TeMEMDETcocuiiiiiiiiiiiiiiii e 232
EXOICISES ..eeviiiiiiiiiiiiiiicic s 232
REfEIONCES......oviiiiiiiicicic s 232
7. WPF Application. reerereesreesneneaeanes 233
INErOAUCHON. ...t 233
SEIUCHUTE. ... 233
ODJECHIVES .ot 234
Desktop applicationscccviiiiiiciiiiciic s 234
WDPT e 235
Pre-TeqUISILES.vovieiiiiiiicc e 236
Getting started with WPF APpPliCation.........cccuvuiueuriiecirinieieiecieineeeesecieeseeenseseeenenaes 236
Structure of the (default) WPF Application project..............cccovvvcveeenssiecicccnenenns 237
Custom Pizza Order fOrm ... 240

Developing real-world WPFE appcccccceiiiiiiiiiicccc e 250

Creating the Sudoku Buddy WPF application............ccccocveevieioiiiieccceeeieeiisccccnes 251
Getting SEATTEM ... 251
Creating the Sudoku UlL............cccocoviiiiiiiiiiiiiiiiiicccccccca 251
Implementing MVVM t0 SHOW NUMDETSccccvvueiiiiiiiiciceeccee e 256
What is Model-View-ViewMOdel?ccovveveieieiiiiiiiiiiecicicscscccscssccscscscnsaas 256
Implementing MV VM.t 257
Show candidates or Pencil MATKScocvvvviiiiiiiiiiiiiiiccca 266
Allowing user t0 type digitocovvveveievoiiiieieiiicieie et 270
Highlighting incorrect iMPutccccccvvvciiiiiiicicc s 274

UTIE FESEIIG oovvviviiveniietenctetcc et 279

DePIOYINEIE ...t 281

CONCIUSION.....ouiiiiiiiic bbb 281
Points t0 TeMEMDETc.ccoiiiiiiiiiiii e 281
EX@ICISES....iviiiiiiiiiiiiicic s 281
REfETEINCES ...ttt 281
8. WinUI 3 283
INErOdUCHON. ... 283
SEIUCEUTE. ..o 283
ODJECHIVES .o 284
WINUTL 3 ..ttt 284
Pre-reqUiSIteS.ccoiiiiiiiiiiiiicic s 285
Getting started with WINUIL 3 @pp.....ccccccceuviiiininiciiiicieiiceiiceecieeees e 285
Structure of the (default) WinUI 3 Application project............ccocvovvvvvciiiinccccnnn, 286
Developing real-world WinUL APDcccceuiiiiiiiiiiiiccecccn e 291

Creating the Image Navigator WintUL Appccccoevevvveeieiiiiiiiicccceeeessccins 292
Getting SEATTEM ...t s 293
Add folder browsing capability to Main Windowcccccevvvivnnninnnnniin, 294
Creating Image View MOodel CLASS..............cccocciiiiiiiiiiiiiiiiiicccccreccciiae 296
Creating Image List PAGEcccviiiiiiiiiiiiiiiiiiiiiiieiciic e 298
Creating Image Detail PAZEcvvviiiiiiiiiiiiiiiiiiccv e 304

UTIE FESEIIG wovvviviiiciiictcec et 308

Deploymentccovvviviiiiiiiiiiiiicis 308

xxii

CONCIUSION....cuiiiiiici b 309
POINts t0 TEMEMDETccoouiiiiiiiiiiiiiiiiicc e 310
EX@TCISES.....cuvviiiietcniietcet et 310
RefOINCES. ...ttt 310
9. .NET MAUI v 313
INErOAUCHON. ... 313
SEUCHUTE. ... 313
ODJECHIVES .. 314
Evolution of mobile application developmentcccccceeivininniiiicciiininininineeeenes 314
INET MAUI ... 314
Pre-TeqUISILES.oviviiiiiiiiciic e 316
Getting started with NET MAULPP.....cccccviiiiiiiiiiiniciiiciccsesce s 316
Structure of the (default) NET MAUI App Project........ccvvvvviovccncssisiiicicccnenenns 317
Creating NET MAUI Blazor Hybrid Application................cccoovvvvvecnsiiivicccicncnnns 324
Developing real-world .INET MAUIL APD .ccoviviriiiiiiinieiicciieceeeeee 327
Recap — Sudoku Buddy WPF Application.............cccccovvviiniiiiiiiiiiiiciscicicciescicieine 327
WPEF 8. INET MAUL......ccooviiiiiiiiiiiiiiiiiciciitctciect s 328
Migrating Sudoku Buddy from WPF to NET MAUL..........ccccccoovvrnnviiiiiccieieiainnn, 329
GetHING SEATTEM ...t 330

Copy files from WPFE appliCationccccvuevvvimueieieiicieieiciceececee s 330

CTOALE VICTIS c..evvvvvivivivectctctttttt sttt 332
Running with Android Simulatorccccoevviivniiiiiiiceeeeceeeee 339

UNIE FESEING oottt 341
DEPIOYINEIIE ...t 342
CONCIUSION....cuiiiiiiic e 343
POINts t0 TEMEMDETccooviiiiiiiiiiiiic e 343
EX@TCISES.....cuvvieiietceiietct s 343
RefOINCES. ...ttt 344
10. ML.NET. v 347
INErOAUCHON. ... 347
SEUCHUTE. ... 347

ODJECHIVES ...t 348

Overview of machine learning............cccceccuviciiiriiiiiciniiniciccce e 348
MLINET oo 349
Pre-reqUiSIteS.ccoiiiiiiiiiiiiicic s 352
Getting started with MLINETccccccoiiiiiiiiiiiicccc s 352
Machine [earning ProCess...........couvvieecuiiiiiiiiiiiiiisicicciisisssies s 352
Binary classification using MLINET APL..........ccccccccovecinviiinniiiiniiiciiieiciccc, 354
Binary clasSifiCationcoueueueiiiiiiiiieiiicieee e 354
SeNntiment AAtASEL............cccviiiiiiiiiiiiiicicicc 354
Creating the PrOZFAMc.ccuvuiuiiiiiiiiiiiiiiiiicicc s 355
Regression analysis using Model BUILAeTcccocovcrrmeieeiniiiiiiicccceeecs 359
Model BUTIACTooovviiiiiiicicicicicicccct 359
Regression Analysiscccccvceiciiiciiicieccc s 360
INSUTance Aataset............cccvvviviiiiiiiiiiiiiiicccc s 360
Creating the PrOQYAMLcccviviiiciiiiiiiiiicicec e 360
Anomaly detection in financial dataset.............cccccoceviiiiniiiiii, 365
ANOMALY ACEECHION ..o 365
Synthetic financial dataset for fraud detectionccccovvvvvcciiiniiiiiiiciiccccc, 365
Principal Component Analysis algQOTTHNMLcccvvveiviniiniiiciiicisiiciie 366
Creating the PrOZYAMccvevviucirueieieieiciistccce e 367
Data preparation ...t 367

MOdel FYAITING ...ttt 374
PrediCtionccvviiiiiiiiiiiiicccccc s 380

UNIE BESEING covvviiicicicietcetc s 384
Create UNTE EESE...ovvveveeeecicictctctcectct s 385
DePIOYIMENE ...t 387
Deployment considerations ... 387

WAYS 0 AEPIOY ..o 388

Thread safety of Prediction ENGINeccccoccciuiuiiiciciiiiiieieecieieeeeiciceieieeieieicaeees 389
CONCIUSION ..ottt 390
PoINnts t0 TEMEMDET ..o 390
EX@ICISES «.vviviiiiiiiiiciitst s 390
REfETEIICES.couiviiiiiiicc s 391

Index terreessneeesssneenanns 393-398

CHAPTER 1

New Features in
Ct 11

Introduction

The previous version of .NET, version 6, was released in Nov 2021 along with C# 10. Since then,
there have been a number of advancements both in the .NET platform and the C# language.
These advancements include performance improvements and newer constructs. This chapter
explains the latest additions to C# 11, including the new features introduced through updated
NET platform APIs and language improvements within the C# language itself.

The chapter describes the major changes along with code snippets that make use of the new
features. The examples are part of the companion source code bundle and can be referred to
from there. Not every new enhancement is described here, and readers are encouraged to
explore further from the websites given in the reference section at the end of the chapter. The
exercise at the end gives the reader an opportunity to apply the newly learned concepts. The
solutions to the exercise are also part of the source code bundle.

As we prepare to go to print, it is worth noting that the forthcoming releases of .NET and C#
are imminent. Readers are encouraged to access further information regarding these upcoming
versions through the provided references.

Structure

The chapter describes the following new features:

e Auto-default struct

2 Building End-to-End Apps with C#11 and .NET 7

e Extended nameof scope

e File-scoped types

e Generic attributes

¢ Generic math

e List patterns

e Microsecond and Nanosecond (.NET 7)

e Newlines in string interpolation expressions

e Pattern match Span <char> on a constant string

e Raw string literals

¢ Regex source generation (NET 7)

¢ Required members

e Simplified ordering with System.LINQ (.NET 7)

e Stream reading - ReadExactly and ReadAtLeast (.NET 7)
e Tar APIs (NET 7)

e Type converters - DateOnly, TimeOnly, Int128, UInt128, and Half (NET 7)
e UTF-8 string literals

e Warning wave 7

Objectives

By the end of this chapter, the readers will be able to develop an understanding of the new
features of C# 11 and the common scenarios where these new concepts can be applied. Some
references to find more information on the topic has also been provided at the end of the
chapter.

Let us now have a look at the new features of C# 11 which have been discussed as follows:

Auto-default struct

In the previous version of C#, structures where the constructor did not assign all the fields
gave compile errors, but not anymore. In C# 11 any fields not explicitly initialized are set to
their default value:

namespace _01_NewFeatures.Features;

1
2
3. internal class AutoDefaultStructure
4. {

New Features in C# 11 3

5. public void Demo()

6. {

7. Point p = new Point(-5);

8. Console.WriteLine(p.ToString());
9. }

10. }

11.

12. internal struct Point

13. {

14. public int X { get; init; }

15. public int Y { get; init; }

16.

17. public Point(int x)

18. {

19. X = X;

20. }

21.

22. public override string ToString()
23. {

24, return $"[X = {X}, Y = {Y}]";
25. }

26. }

In the preceding example, the Point constructor on line 17 gives compile error with C# 10
(NET 6) - CS0843: Auto-implemented property €{0}’ must be fully assigned
before control is returned to the caller. Consider updating to language
version {1}’ to auto-default the property. However, it works fine in C# 11 and the
value of the property Y is set to default zero by the compiler.

Extended nameof scope

A nameof expression produces the name of a variable, type, or member as the string constant.
In C# 11 this definition is extended to allow nameof operator to specify the name of a method
parameter in an attribute on the method or parameter declaration. This feature is most often
useful to add attributes for nullable static analysis.

namespace _01 NewFeatures.Features;

1
2
3. public class CustomNullCheck : Attribute
4. {

5

private readonly string _paramName;

4 Building End-to-End Apps with C#11 and .NET 7

6 public CustomNullCheck(string paramName)

7 {

8. _paramName = paramName;

9 }

10. }

11.

12. internal class ExtendedNameOfScope

13. {

14. [CustomNullCheck(nameof(values))] //C# 11

15. public void Demo(List<int> values)

16. {

17. Console.WriteLine(nameof(values)); //output: values

18. Console.Writeline(nameof(values.Count)); // output: Count

19.

20. Name = null; //throws exception: Name cannot be null (Parameter 'value')

21.

22. [CustomNullCheck(nameof(T))] //C# 11

23. void LocalFunction<T>(T param)

24. {}

25.

26. var lambdaExpression = ([CustomNullCheck(nameof(someNumber))] int
someNumber) => someNumber.ToString(); //C# 11

27. }

28.

29. private string _name;

30. public string Name

31. {

32. get => _name;

33. set => name = value ?? throw new ArgumentNullException(nameof(value),
$"{nameof(Name)} cannot be null");

34, }

35. }

In the preceding snippet, lines 17, 18 and 20 demonstrate existing usage of nameof. The
new feature allows using CustomNullCheck(nameof(values)) on line 14 instead of
CustomNullCheck("values"). Lines 22 and 26 demonstrate the extended scope with local
function and parameter declaration, respectively.

New Features in C# 11 5

File-scoped types

C# 11 introduces a new access modifier file. The visibility of created type is scoped to the
source file in which it is declared. This feature helps source generator authors avoid naming
collisions. file local types cannot be nested, and no accessibility modifiers (private, public,
protected, and so on.) can be used in combination with file on a type as it is treated as an
independent concept from accessibility.

1
2
3
4
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,

//Filel.cs

namespace _01 NewFeatures.Features;

internal class FilelLocalTypes

{
}

file class Animal

{
}

// File2.cs

namespace SecondNS;

file class Animal // different symbol than the Animal in Filel

{
}

// File3.cs

using SecondNS;

var animal = new Animal(); // error: The type or namespace name 'Animal’ could
not be found.

The Animal class declared in Filel.cs and File2.cs are different because of the file
modifier. Trying to access either in File3.cs gives error.

Generic attributes

C# 11 now supports generics for attribute classes as well. Earlier attributes had to accept
System.Type as a parameter and users passed a typeof expression to provide the attribute

6 Building End-to-End Apps with C#11 and .NET 7

with types that it needs. Attribute can now use the existing system of type parameter constraints
to express the requirements for the types they take as input.

namespace _01_NewFeatures.Features;

1

2

3. // Before C# 11 -----------

4. internal class BeforeCSharpll

5 A

6 [CustomTypeAttribute(typeof(string))]
7 public string? Method() => default;

8

9

10. public class CustomTypeAttribute : Attribute

11. {

12. public CustomTypeAttribute(Type t) => ParamType = t;
13.

14. public Type ParamType { get; }

15. }

16.

17. [/ =--mmmmmm e

18.

19. internal class GenericAttributes

20. {

21. [GenericAttribute<string>()]

22. public string Method() => default;
23. }

24.

25. public class GenericAttribute<T> : Attribute { }

The preceding line, line 10 defines CustomType attribute in the older way. Notice the constructor
accepting parameter t of type Type. When this attribute is used on line 6 typeof(string) is
passed. The newer way allows defining attributes using generic as on line 25 notice the <T>
with GenericAttribute. To use this <string> is passed on line 21.

Generic math

NET 7 introduces new math-related generic interfaces to the base class library. In addition, C# 11
allows defining static abstract interface members. Together, these innovations enable performing
mathematical operations generically — that is, without having to know the exact type. Earlier

New Features in C# 11 7

one had to create an overloaded method for each type. Now a single generic method can be
written, where the type of the parameter is constrained to be a number-like type.

1. using System.Numerics;

2. namespace _01_ NewFeatures.Features;

3.

4. internal class GenericMath

5 A

6. public void Demo()

7. {

8. Console.WriteLine("GenericMath.Demo() ---- ");

9.

10. //Example 1

11. Vector vl = new() { X = -2, Y = 8 };

12. Vector v2 = new() { X =6, Y = -1 };

13.

14. Console.WriteLine(vl + v2); //Outputs: Vector (X: 4; Y: 7)

15. Console.WriteLine(vl - v2); //Outputs: Vector (X: -8; Y: 9)

16.

17. //Example 2

18. Console.WriteLine(new List<int> { 5, -3, @, 25 }.AddNumbers<int,
long>()); //Outputs: 27

19. Console.WriteLine(new List<double> { 5.5, 3.2, 4.6, 10.7
}.AddNumbers<double, double>()); //Outputs: 24

20. Console.WriteLine("----------=------------ ")

21. }

22. }

23.

24. public record Vector :

25. IAdditionOperators<Vector, Vector, Vector>,

26. ISubtractionOperators<Vector, Vector, Vector>

27. {

28. public int X { get; set; }

29. public int Y { get; set; }

30.

31. public static Vector operator +(Vector self, Vector other)
32. {

33. return new Vector { X = self.X + other.X, Y = self.Y + other.Y };

8 Building End-to-End Apps with C#11 and .NET 7

34, }

35.

36. public static Vector operator -(Vector self, Vector other)

37. {

38. return new Vector { X = self.X - other.X, Y = self.Y - other.Y };
39. }

40.

41. public override string ToString() => $"Vector (X: {X}; Y: {Y})";
42. }

43.

44. internal static class MathExtensions

45. {

46. public static TResult AddNumbers<T, TResult>(this IEnumerable<T> values)
47. where T : INumber<T>

48. where TResult : INumber<TResult>

49. {

50. TResult result = TResult.Zero;

51.

52. foreach (var value in values)

53. {

54, result += TResult.CreateChecked(value);

55. }

56.

57. return result;

58. }

59. }

The preceding snippet demonstrates two examples. In the first example, Vector record
implements IAdditionOperators which contains the + operator declared as static abstract
and is implemented explicitly in the Vector record. Similarly, Vector also implements
ISsubtractionOperators containing the - operator declared as static abstract and is
implemented explicitly.

In the second example, AddNumbers extension method adds a set of values together. The
method takes in an IEnumerable<T> where T must be a type that implements the INumber<T>
interface. It returns a TResult with a similar constraint (it must be a type that implements
INumber<TResult>). Because of the two generic parameters, it is allowed to return a different
type than it takes as an input. For example, AddNumbers<int, long> allows summing the
values of an int[] and returning a 64-bit result to help avoid overflow. TResult.Zero
efficiently gives the value of 0 as a TResult and TResult.CreateChecked converts value

New Features in C# 11 9

from a T into a TResult throwing an OverflowException if it is too large or too small to fit in
the destination format.

There may be a question why we cannot do simply as follows:

61. public static T Sum<T>(this IEnumerable<T> source)
62. {

63. T sum = default;

64. foreach (T v in source)

65. {

66. sum += v;

67. }

68.

69. return sum;

70. }

The preceding code gives error on line 66 - CS6019: Operator '+=' cannot be applied
to operands of type 'T' and 'T' because we cannot use addition assignment operators
on a generic class T unless it implements the INumber interface which supports the addition
operator defined as static abstract member.

List patterns

Patterns are used in C# to match an input expression against some characteristics (or pattern
combination). C# supports multiple patterns; list is the latest addition in C# 11. List patterns
evaluate sequence of elements in a list or an array to corresponding constant, type, property,
or relational pattern.

1. namespace _01 NewFeatures.Features;

2

3. internal class ListPatterns

4. {

5. public void Demo()

6 {

7 var numbers = new[] { -10, @, 5, 7 };

8

9 // Comparison with constant patterns

10. Console.WriteLine(numbers is [-1@, @, 5, 7]); // True
11. Console.WriteLine(numbers is [-10, @, 5]); // False
12. Console.WriteLine(numbers is [7, -10, @, 5]); // False

13.

10 Building End-to-End Apps with C#11 and .NET 7

14. // Comparison with discard patterns

15. Console.WriteLine(numbers is [, @, _, 71); // True

16.

17. // Comparison with range pattern

18. Console.WritelLine(numbers is [.., 5, _1); // True

19.

20. // Comparison with logical patterns

21. Console.WriteLine(numbers is [, <=2, _, _1); // True
22.

23. // Comparison with length pattern

24. if (numbers is [< @, .. { Length: 2 or 4 }, > 0]) //true
25. Console.WriteLine("valid");

26. else

27. Console.WriteLine("Invalid");

28.

29. // Comparison with var pattern

30. if ("Curious" is ['c' or 'C', 'u', .. var str, 'u', 's' or 'S']) //true
31. Console.WriteLine($"Matches, inner string: {str}");
32. else

33. Console.WriteLine($"No match");

34, }

35. }

The preceding snippet demonstrates comparing numbers which is a list of integers with
various combinations of list patterns. The last example on line 30, compares a string with a list
pattern and retrieves the value within the string using var pattern.

Microsecond and Nanosecond ((NET 7)

Before .NET 7, the lowest increment of time available in the various date and time structures
was the tick, available as the Ticks property, one tick being 100 nanoseconds. To find anything
lower than tick, developers had to perform calculations on the tick value. .NET 7 addresses
this by introducing both microsecond and nanosecond to the date and time implementations
— TimeSpan, TimeOnly, DateTime, and DateTimeOffset.

namespace _@1_ NewFeatures.Features;

1
2
3. internal class MicroAndNanoSeconds
4

{

New Features in C# 11 11

w 0 N o U

11.
12.
13.
14.

15.

16.

17.

18.
19.
20.

21.

22.

23.

24.
25.
26.

27.

28.

29.

30.

31.

public void Demo()

{
const string dt = "0001-01-01"; //yyyy-mm-dd
const string tml = "00:00:00.0001000"; //hh:mm:ss.ticks
const string tm2 = "00:00:00.0000009"; //hh:mm:ss.ticks

//1 sec = 10”3 milli sec = 1076 micro sec = 1077 ticks

//DateTime examples

Console.WriteLine(new DateTime(©001, 01, 01, 00, 00, 00, 00, 100).
Ticks); //1000 (100 micro sec = 1000 ticks)

Console.WriteLine(DateTime.Parse($"{dt} {tml}").Microsecond); //100
(1000 ticks = 100 micro sec)

Console.WriteLine(DateTime.Parse($"{dt} {tm2}").Nanosecond); //900 (9
ticks = 900 nano sec)

Console.WriteLine(DateTime.MinValue.AddMicroseconds(100).Ticks); //1000
(100 micro sec = 1000 ticks)

//DateTimeOffset examples

Console.WriteLine(new DateTimeOffset(0001, 01, 01, 00, 00, 00, 00, 999,
TimeSpan.FromHours(-8)).Ticks); //9990 (999 micro sec = 9990 ticks)

Console.WriteLine(DateTimeOffset.Parse($"{dt} {tml} -8").Microsecond);
//100 (1000 ticks = 100 micro sec)

Console.WriteLine(DateTimeOffset.Parse($"{dt} {tm2} -8").Nanosecond);
//900 (9 ticks = 900 nano sec)

Console.WriteLine(new DateTimeOffset().AddMicroseconds(100).Ticks);
//1000 (100 micro sec = 1000 ticks)

//TimeSpan examples

Console.WriteLine(new TimeSpan(1@ * TimeSpan.TicksPerMicrosecond).
Ticks); //100 (1@ * 1@)

Console.WriteLine(new TimeSpan(1@ * TimeSpan.NanosecondsPerTick).Ticks);
//1000 (10 * 100)

Console.WritelLine(new TimeSpan(®, @, @, 1, 1, 1).Ticks); //10010010 (1
sec + 1 milli sec + 1 micro sec = 1077 + 10”4 + 10 ticks)

Console.WriteLine(TimeSpan.Parse($"{tm1}").Microseconds); //100 (1000
ticks = 100 micro sec)

Console.WriteLine(TimeSpan.Parse($"{tm2}").Nanoseconds); //9060 (9 ticks
= 900 nano sec)

Console.WritelLine(TimeSpan.FromMicroseconds(100).Ticks); //1000 (100
micro sec = 1000 ticks)

12 Building End-to-End Apps with C#11 and .NET 7

32.

33. //TimeOnly examples

34, Console.WriteLine(new TimeOnly(@, ©, 1, 1, 1).Ticks); //10010010 (1 sec
+ 1 milli sec + 1 micro sec = 1077 + 10”4 + 10 ticks)

35. Console.WriteLine(TimeOnly.Parse($"{tm1}").Microsecond); //100 (1000
ticks = 100 micro sec)

36. Console.WriteLine(TimeOnly.Parse($"{tm2}").Nanosecond); //900 (9 ticks =
900 nano sec)

37. }

38. }

The preceding snippet shows how to use the new Microsecond and Nanosecond properties
in the date and time related structures. Also notice the new constructors that accept the
microsecond parameter (lines 14, 20, 28 and 34) and the new related methods AddMicroseconds
and FromMicroseconds (lines 17, 23 and 31).

Newlines in string interpolation expressions

Starting C# 11, the interpolated expressions can include newlines. The text between the curly
braces {} must be valid C# expression including newlines to improve readability.

1. namespace _01 NewFeatures.Features;

2

3. internal class NewlineInStringInterpolation

4. {

5. public void Demo()

6 {

7 // Example 1 - switch expression

8 int statusCode = 302;

9 string message = $"HTTP status code {statusCode} is for {statusCode switch
10. {

11. > 599 or < 100 => "Invalid",

12. > 499 => "Server error",

13. > 399 => "Client error",

14. > 299 => "Redirection",

15. > 199 => "Successful",

16. > 99 => "Informational response"

17. I3

18. Console.WriteLine(message); //Output: HTTP status code 302 is for Redirection

19.
20. // Example 2 - LINQ query

New Features in C# 11 13

21. int[] numbers = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

22.

23. Console.WriteLine($"The even values of {nameof(numbers)} are {string.
Join(" s n ,

24, numbers.Where(n => n % 2 == 0))}."); //Output: The even values of
numbers are 2, 4, 6, 8, 10.

25. }

26. }

The preceding code shows examples that use switch statement and LINQ query spread across
multiple lines within a string interpolation expression.

Pattern match Span<char> on a constant string

To encourage adoption of ReadOnlySpan<char> and Span<char> (for performance reasons)
pattern matching these with a constant string is allowed in C# 11.

1. namespace _01 NewFeatures.Features;

2

3. internal class PatternMatchingWithSpanChar

4. {

5. public void Demo()

6 {

7 var readOnlySpan = "Keep it simple!".AsSpan();
8 if (readOnlySpan is "Keep it simple!")

9 {

10. Console.WriteLine("Simplicity!");

11. }

12.

13. Span<char> spanChar = new Span<char>(new char[] { 'a', 'b', 'c' });
14. if (spanChar is "abc")

15. {

16. Console.WriteLine("Alphabets!");

17. }

18. }

19. }

Line 14 in the preceding code demonstrates the is pattern matching for a Span<char> with a
string literal.

14 Building End-to-End Apps with C#11 and .NET 7

Raw string literals

C# 11 allows a new form of string literal that starts with a minimum of three double-quote
characters """ followed by the content of the string, and then ends with the same number of
quotes that the literal started with. The content can be any arbitrary text including whitespaces,
new lines, embedded quotes, and other special characters without requiring escape sequences.
Single line raw string literals require the opening and closing quote characters on the same
line. Multi-line raw string literals require both opening and closing quote characters on their
own line. The newlines following the opening quote and preceding the closing quote are not
included in the final content.

If the text contains three (or more) repeated double quotes, then four (or more) double quotes
must be used to escape them. Raw string literals can be combined with string interpolation to
include braces in the output text. Multiple $ characters denote how many consecutive braces
start and end the interpolation.

1. namespace _01 NewFeatures.Features;

2.

3. internal class RawStringlLiterals

4. {

5. public void Demo()

6. {

7. //Example 1: string with quote, newline and tab
8. var xml = """

9. <element attr="content">

10. <body>

11. </body>

12. </element>

13. 'S

14. Console.WritelLine(xml);

15.

16. //Example 2: string with four quotes
17. var line = """""

18. This line needs four quotes """" so
19. should terminate with five.
20. 8

21. Console.WritelLine(line);

22.

23. //Example 3: string interpolation

24. string key = "100", value = "C#";

25. string jsonString =

New Features in C# 11 15

26. £

27. {

28. "Key": {{key}},

29. "Value": {{value}}

30. }

31. e,

32. Console.WriteLine(jsonString);
33. }

34, }

Notice in the preceding three examples, the opening and the closing quote are on their own
separate line, but the newline is ignored in the output. The white spaces in the text between is
however preserved in the output.

Regex source generation ((NET 7)

The .NET 7 SDK includes a source generator that recognizes the new GeneratedRegex
Attribute on a partial method that returns Regex. During compilation source code of regular
expression is generated using the Roslyn Source Generator. The source that is emitted is part
of the project in a file RegexGenerator.g.cs under System.Text.RegularExpressions.
Generator within Analyzers and is easily viewable and debuggable. This code is optimized
and provides an implementation of the method that implements all the logic for the Regex.

using System.Text.RegularExpressions;

namespace _01 NewFeatures.Features;

1

2

3

4. internal partial class RegexSourceGenerator

5

6 private static readonly Regex VowelRegex =
7 new(pattern: "[aeiou]",

8

9

options: RegexOptions.Compiled | RegexOptions.IgnoreCase);

10. [GeneratedRegex("[aeiou]", RegexOptions.IgnoreCase | RegexOptions.Compiled,
"en-US")]

11. private static partial Regex VowelGeneratedRegex();

12.

13. private string IsVowel(char c)

14. {

15. var d = VowelRegex.IsMatch(c.ToString()) ? "" : " not";

16. return $"VowelRegex: {c} is{d} vowel";

17. }

16 Building End-to-End Apps with C#11 and .NET 7

18.

19. private string IsVowelGeneratedRegex(char c)

20. {

21. var d = VowelGeneratedRegex().IsMatch(c.ToString()) ? "" : " not";

22. return $"VowelGeneratedRegex: {c} is{d} vowel";

23. }

24.

25. public void Demo()

26. {

27. Console.WriteLine(IsVowel('A"')); //VowelRegex: A is vowel

28. Console.WriteLine(IsVowelGeneratedRegex('e')); //VowelGeneratedRegex: e
is vowel

29.

30. Console.WriteLine(IsVowel('c')); //VowelRegex: c is not vowel

31. Console.WriteLine(IsVowelGeneratedRegex('S')); //VowelGeneratedRegex: S
is not vowel

32.

33. Console.WriteLine(IsVowel('o')); //VowelRegex: o is vowel

34, Console.WriteLine(IsVowelGeneratedRegex('I')); //VowelGeneratedRegex: I
is vowel

35. }

36. }

The preceding code uses two different methods to check for vowels. The method IsVowel
uses the traditional regular expression VowelRegex whereas IsVowelGeneratedRegex uses
the source generated regular expression VowelGeneratedRegex. Both ways are equivalent,
but the latter is more optimized.

Required members

Starting C# 11 the required modifier allows to mark fields and properties that must be
initialized while declaring a type - class, struct, and record (but not interface types). Any
expression that initializes a new instance of the type must initialize all the required members
without this there is compilation error.

The required members in a type form a required member list which must be initialized during
the construction and initialization of an instance of the type. This list is inherited by the derived
types automatically that removes repetitive code.

This modifier cannot be applied on static, private or read-only members. Additionally,
the SetsRequiredMembers attribute added to a constructor asserts to the compiler that the
constructor does initialize all required members.

New Features in C# 11 17

1. using System.Diagnostics.CodeAnalysis;

2.

3. namespace _01 NewFeatures.Features;

4.

5. internal class RequiredMembers

6. {

7. public void Demo()

8. {

9. //valid

10. var suzuki = new Car { Make = "Suzuki", Model = string.Empty, Color =
"Blue", Year = 2022 };

11. Car toyota = new("", "Camry");

12.

13. //compilation error due to missing required members

14. Car car = new();

15. var someCar = new Car { Model = string.Empty, Color = "Red", Year = 2020
}s

16. }

17. }

18. public class Car

19. {

20. public Car() { }

21.

22. [SetsRequiredMembers]

23. public Car(string make, string model)

24, {

25. Make = make;

26. Model = model;

27. }

28.

29. public required string Make { get; init; }

30. public required string Model { get; set; }

31. public string? Color { get; set; }

32. public int? Year { get; set; }

33. }

In the preceding code, the Car class has two required properties Make and Model. Not initializing
these properties results in compilation error on line numbers 14 and 15.

18 Building End-to-End Apps with C#11 and .NET 7

Simplified ordering with System.LINQ (.NET 7)

System.Ling now has the methods Order and OrderDescending, which are there to order an
IEnumerable (and IQueryable) according to T.

1. namespace _01_NewFeatures.Features;

2

3. internal class SimplifiedOrdering

4. A

5. public void Demo()

6 {

7 var data = new[] { 2, 1, 3, @, -10, 25, 8, -4, 22 };
8

9 //Existing way (still supported)

10. var sorted = data.OrderBy(e => e);

11. var sortedDesc = data.OrderByDescending(e => e);
12.

13. //New simplified way

14. var sortedSimplified = data.Order();

15. var sortedDescSimplified = data.OrderDescending();
16. }

17. }

The preceding code with the list of integer values is sorted using the existing way which
requires passing the lambda expression e => e and the newer simplified way which sorts by
the generic type T.

Stream reading - ReadExactly and ReadAtLeast
(.NET 7)

There may be occasions when Stream.Read() may return less data than what is available
in the stream or size of the buffer being passed. There are two new methods in System.
I0.Streanm class to help with such a situation. The new ReadExactly method is guaranteed
to read exactly the number of bytes requested. If the stream ends before the requested bytes
have been read, an EndOfStreamException is thrown. The new ReadAtLeast method will
read at least the number of bytes requested. It can read more if more data is readily available,
up to the size of the buffer. If the stream ends before the requested bytes have been read, an
EndOofStreamException is thrown. Here, it is possible to opt out of throwing the exception to
manage the end-of-stream scenario.

1. namespace _01_NewFeatures.Features;
2.

